hypothesis in research work

Work With Us

Private Coaching

Done-For-You

Short Courses

Client Reviews

Free Resources

What Is A Research Hypothesis?

A Plain-Language Explainer + Practical Examples

Dissertation Coaching

Research Hypothesis 101

  • What is a hypothesis ?
  • What is a research hypothesis (scientific hypothesis)?
  • Requirements for a research hypothesis
  • Definition of a research hypothesis
  • The null hypothesis

What is a hypothesis?

Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:

Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.

In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:

Hypothesis: sleep impacts academic performance.

This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.

But that’s not good enough…

Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .

What is a research hypothesis?

A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .

Let’s take a look at these more closely.

Need a helping hand?

hypothesis in research work

Hypothesis Essential #1: Specificity & Clarity

A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).

Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.

As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.

Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.

A good research hypothesis needs to be very clear about what’s being assessed and very specific about the expected outcome.

Hypothesis Essential #2: Testability (Provability)

A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.

For example, consider the hypothesis we mentioned earlier:

We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference.

Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?

So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂

A good research hypothesis must be testable. In other words, you must able to collect observable data in a scientifically rigorous fashion to test it.

Defining A Research Hypothesis

You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.

A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.

So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.

What about the null hypothesis?

You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.

For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.

At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.

And there you have it – hypotheses in a nutshell. 

If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.

Research Methodology Bootcamp

Learn More About Methodology

How To Choose A Tutor For Your Dissertation

How To Choose A Tutor For Your Dissertation

Hiring the right tutor for your dissertation or thesis can make the difference between passing and failing. Here’s what you need to consider.

5 Signs You Need A Dissertation Helper

5 Signs You Need A Dissertation Helper

Discover the 5 signs that suggest you need a dissertation helper to get unstuck, finish your degree and get your life back.

Triangulation: The Ultimate Credibility Enhancer

Triangulation: The Ultimate Credibility Enhancer

Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.

Research Limitations 101: What You Need To Know

Research Limitations 101: What You Need To Know

Learn everything you need to know about research limitations (AKA limitations of the study). Includes practical examples from real studies.

In Vivo Coding 101: Full Explainer With Examples

In Vivo Coding 101: Full Explainer With Examples

Learn about in vivo coding, a popular qualitative coding technique ideal for studies where the nuances of language are central to the aims.

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

18 Comments

Lynnet Chikwaikwai

Very useful information. I benefit more from getting more information in this regard.

Dr. WuodArek

Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc

Afshin

In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin

GANDI Benjamin

This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.

Lucile Dossou-Yovo

Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?

Pereria

It’s a counter-proposal to be proven as a rejection

Egya Salihu

Please what is the difference between alternate hypothesis and research hypothesis?

Mulugeta Tefera

It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?

Derek Jansen

In qualitative research, one typically uses propositions, not hypotheses.

Samia

could you please elaborate it more

Patricia Nyawir

I’ve benefited greatly from these notes, thank you.

Hopeson Khondiwa

This is very helpful

Dr. Andarge

well articulated ideas are presented here, thank you for being reliable sources of information

TAUNO

Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)

I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?

Angelo Loye

Angelo Loye Very fantastic information. From here I am going straightaway to present the research hypothesis One question, do we apply hypothesis in qualitative research? What nul hypothesi Otherwise I appreciate your research methodo

Tesfaye Negesa Urge

this is very important note help me much more

Elton Cleckley

Hi” best wishes to you and your very nice blog” 

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

hypothesis in research work

  • Print Friendly
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

hypothesis in research work

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

hypothesis in research work

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

An official website of the United States government

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List

The Canadian Journal of Hospital Pharmacy logo

Research: Articulating Questions, Generating Hypotheses, and Choosing Study Designs

Mary p tully.

  • Author information
  • Copyright and License information

Address correspondence to: Dr Mary P Tully, Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester M13 9PT UK, e-mail: [email protected]

INTRODUCTION

Articulating a clear and concise research question is fundamental to conducting a robust and useful research study. Although “getting stuck into” the data collection is the exciting part of research, this preparation stage is crucial. Clear and concise research questions are needed for a number of reasons. Initially, they are needed to enable you to search the literature effectively. They will allow you to write clear aims and generate hypotheses. They will also ensure that you can select the most appropriate research design for your study.

This paper begins by describing the process of articulating clear and concise research questions, assuming that you have minimal experience. It then describes how to choose research questions that should be answered and how to generate study aims and hypotheses from your questions. Finally, it describes briefly how your question will help you to decide on the research design and methods best suited to answering it.

TURNING CURIOSITY INTO QUESTIONS

A research question has been described as “the uncertainty that the investigator wants to resolve by performing her study” 1 or “a logical statement that progresses from what is known or believed to be true to that which is unknown and requires validation”. 2 Developing your question usually starts with having some general ideas about the areas within which you want to do your research. These might flow from your clinical work, for example. You might be interested in finding ways to improve the pharmaceutical care of patients on your wards. Alternatively, you might be interested in identifying the best antihypertensive agent for a particular subgroup of patients. Lipowski 2 described in detail how work as a practising pharmacist can be used to great advantage to generate interesting research questions and hence useful research studies. Ideas could come from questioning received wisdom within your clinical area or the rationale behind quick fixes or workarounds, or from wanting to improve the quality, safety, or efficiency of working practice.

Alternatively, your ideas could come from searching the literature to answer a query from a colleague. Perhaps you could not find a published answer to the question you were asked, and so you want to conduct some research yourself. However, just searching the literature to generate questions is not to be recommended for novices—the volume of material can feel totally overwhelming.

Use a research notebook, where you regularly write ideas for research questions as you think of them during your clinical practice or after reading other research papers. It has been said that the best way to have a great idea is to have lots of ideas and then choose the best. The same would apply to research questions!

When you first identify your area of research interest, it is likely to be either too narrow or too broad. Narrow questions (such as “How is drug X prescribed for patients with condition Y in my hospital?”) are usually of limited interest to anyone other than the researcher. Broad questions (such as “How can pharmacists provide better patient care?”) must be broken down into smaller, more manageable questions. If you are interested in how pharmacists can provide better care, for example, you might start to narrow that topic down to how pharmacists can provide better care for one condition (such as affective disorders) for a particular subgroup of patients (such as teenagers). Then you could focus it even further by considering a specific disorder (depression) and a particular type of service that pharmacists could provide (improving patient adherence). At this stage, you could write your research question as, for example, “What role, if any, can pharmacists play in improving adherence to fluoxetine used for depression in teenagers?”

TYPES OF RESEARCH QUESTIONS

Being able to consider the type of research question that you have generated is particularly useful when deciding what research methods to use. There are 3 broad categories of question: descriptive, relational, and causal.

Descriptive

One of the most basic types of question is designed to ask systematically whether a phenomenon exists. For example, we could ask “Do pharmacists ‘care’ when they deliver pharmaceutical care?” This research would initially define the key terms (i.e., describing what “pharmaceutical care” and “care” are), and then the study would set out to look for the existence of care at the same time as pharmaceutical care was being delivered.

When you know that a phenomenon exists, you can then ask description and/or classification questions. The answers to these types of questions involve describing the characteristics of the phenomenon or creating typologies of variable subtypes. In the study above, for example, you could investigate the characteristics of the “care” that pharmacists provide. Classifications usually use mutually exclusive categories, so that various subtypes of the variable will have an unambiguous category to which they can be assigned. For example, a question could be asked as to “what is a pharmacist intervention” and a definition and classification system developed for use in further research.

When seeking further detail about your phenomenon, you might ask questions about its composition. These questions necessitate deconstructing a phenomenon (such as a behaviour) into its component parts. Within hospital pharmacy practice, you might be interested in asking questions about the composition of a new behavioural intervention to improve patient adherence, for example, “What is the detailed process that the pharmacist implicitly follows during delivery of this new intervention?”

After you have described your phenomena, you may then be interested in asking questions about the relationships between several phenomena. If you work on a renal ward, for example, you may be interested in looking at the relationship between hemoglobin levels and renal function, so your question would look something like this: “Are hemoglobin levels related to level of renal function?” Alternatively, you may have a categorical variable such as grade of doctor and be interested in the differences between them with regard to prescribing errors, so your research question would be “Do junior doctors make more prescribing errors than senior doctors?” Relational questions could also be asked within qualitative research, where a detailed understanding of the nature of the relationship between, for example, the gender and career aspirations of clinical pharmacists could be sought.

Once you have described your phenomena and have identified a relationship between them, you could ask about the causes of that relationship. You may be interested to know whether an intervention or some other activity has caused a change in your variable, and your research question would be about causality. For example, you may be interested in asking, “Does captopril treatment reduce blood pressure?” Generally, however, if you ask a causality question about a medication or any other health care intervention, it ought to be rephrased as a causality–comparative question. Without comparing what happens in the presence of an intervention with what happens in the absence of the intervention, it is impossible to attribute causality to the intervention. Although a causality question would usually be answered using a comparative research design, asking a causality–comparative question makes the research design much more explicit. So the above question could be rephrased as, “Is captopril better than placebo at reducing blood pressure?”

The acronym PICO has been used to describe the components of well-crafted causality–comparative research questions. 3 The letters in this acronym stand for Population, Intervention, Comparison, and Outcome. They remind the researcher that the research question should specify the type of participant to be recruited, the type of exposure involved, the type of control group with which participants are to be compared, and the type of outcome to be measured. Using the PICO approach, the above research question could be written as “Does captopril [ intervention ] decrease rates of cardiovascular events [ outcome ] in patients with essential hypertension [ population ] compared with patients receiving no treatment [ comparison ]?”

DECIDING WHETHER TO ANSWER A RESEARCH QUESTION

Just because a question can be asked does not mean that it needs to be answered. Not all research questions deserve to have time spent on them. One useful set of criteria is to ask whether your research question is feasible, interesting, novel, ethical, and relevant. 1 The need for research to be ethical will be covered in a later paper in the series, so is not discussed here. The literature review is crucial to finding out whether the research question fulfils the remaining 4 criteria.

Conducting a comprehensive literature review will allow you to find out what is already known about the subject and any gaps that need further exploration. You may find that your research question has already been answered. However, that does not mean that you should abandon the question altogether. It may be necessary to confirm those findings using an alternative method or to translate them to another setting. If your research question has no novelty, however, and is not interesting or relevant to your peers or potential funders, you are probably better finding an alternative.

The literature will also help you learn about the research designs and methods that have been used previously and hence to decide whether your potential study is feasible. As a novice researcher, it is particularly important to ask if your planned study is feasible for you to conduct. Do you or your collaborators have the necessary technical expertise? Do you have the other resources that will be needed? If you are just starting out with research, it is likely that you will have a limited budget, in terms of both time and money. Therefore, even if the question is novel, interesting, and relevant, it may not be one that is feasible for you to answer.

GENERATING AIMS AND HYPOTHESES

All research studies should have at least one research question, and they should also have at least one aim. As a rule of thumb, a small research study should not have more than 2 aims as an absolute maximum. The aim of the study is a broad statement of intention and aspiration; it is the overall goal that you intend to achieve. The wording of this broad statement of intent is derived from the research question. If it is a descriptive research question, the aim will be, for example, “to investigate” or “to explore”. If it is a relational research question, then the aim should state the phenomena being correlated, such as “to ascertain the impact of gender on career aspirations”. If it is a causal research question, then the aim should include the direction of the relationship being tested, such as “to investigate whether captopril decreases rates of cardiovascular events in patients with essential hypertension, relative to patients receiving no treatment”.

The hypothesis is a tentative prediction of the nature and direction of relationships between sets of data, phrased as a declarative statement. Therefore, hypotheses are really only required for studies that address relational or causal research questions. For the study above, the hypothesis being tested would be “Captopril decreases rates of cardiovascular events in patients with essential hypertension, relative to patients receiving no treatment”. Studies that seek to answer descriptive research questions do not test hypotheses, but they can be used for hypothesis generation. Those hypotheses would then be tested in subsequent studies.

CHOOSING THE STUDY DESIGN

The research question is paramount in deciding what research design and methods you are going to use. There are no inherently bad research designs. The rightness or wrongness of the decision about the research design is based simply on whether it is suitable for answering the research question that you have posed.

It is possible to select completely the wrong research design to answer a specific question. For example, you may want to answer one of the research questions outlined above: “Do pharmacists ‘care’ when they deliver pharmaceutical care?” Although a randomized controlled study is considered by many as a “gold standard” research design, such a study would just not be capable of generating data to answer the question posed. Similarly, if your question was, “Is captopril better than placebo at reducing blood pressure?”, conducting a series of in-depth qualitative interviews would be equally incapable of generating the necessary data. However, if these designs are swapped around, we have 2 combinations (pharmaceutical care investigated using interviews; captopril investigated using a randomized controlled study) that are more likely to produce robust answers to the questions.

The language of the research question can be helpful in deciding what research design and methods to use. Subsequent papers in this series will cover these topics in detail. For example, if the question starts with “how many” or “how often”, it is probably a descriptive question to assess the prevalence or incidence of a phenomenon. An epidemiological research design would be appropriate, perhaps using a postal survey or structured interviews to collect the data. If the question starts with “why” or “how”, then it is a descriptive question to gain an in-depth understanding of a phenomenon. A qualitative research design, using in-depth interviews or focus groups, would collect the data needed. Finally, the term “what is the impact of” suggests a causal question, which would require comparison of data collected with and without the intervention (i.e., a before–after or randomized controlled study).

CONCLUSIONS

This paper has briefly outlined how to articulate research questions, formulate your aims, and choose your research methods. It is crucial to realize that articulating a good research question involves considerable iteration through the stages described above. It is very common that the first research question generated bears little resemblance to the final question used in the study. The language is changed several times, for example, because the first question turned out not to be feasible and the second question was a descriptive question when what was really wanted was a causality question. The books listed in the “Further Reading” section provide greater detail on the material described here, as well as a wealth of other information to ensure that your first foray into conducting research is successful.

This article is the second in the CJHP Research Primer Series, an initiative of the CJHP Editorial Board and the CSHP Research Committee. The planned 2-year series is intended to appeal to relatively inexperienced researchers, with the goal of building research capacity among practising pharmacists. The articles, presenting simple but rigorous guidance to encourage and support novice researchers, are being solicited from authors with appropriate expertise.

Previous article in this series:

Bond CM. The research jigsaw: how to get started. Can J Hosp Pharm . 2014;67(1):28–30.

Competing interests: Mary Tully has received personal fees from the UK Renal Pharmacy Group to present a conference workshop on writing research questions and nonfinancial support (in the form of travel and accommodation) from the Dubai International Pharmaceuticals and Technologies Conference and Exhibition (DUPHAT) to present a workshop on conducting pharmacy practice research.

  • 1. Hulley S, Cummings S, Browner W, Grady D, Newman T. Designing clinical research. 4th ed. Philadelphia (PA): Lippincott, Williams and Wilkins; 2013. [ Google Scholar ]
  • 2. Lipowski EE. Developing great research questions. Am J Health Syst Pharm. 2008;65(17):1667–70. doi: 10.2146/ajhp070276. [ DOI ] [ PubMed ] [ Google Scholar ]
  • 3. Richardson WS, Wilson MC, Nishikawa J, Hayward RS. The well-built clinical question: a key to evidence-based decisions. ACP J Club. 1995;123(3):A12–3. [ PubMed ] [ Google Scholar ]

Further Reading

  • Cresswell J. Research design: qualitative, quantitative and mixed methods approaches. London (UK): Sage; 2009. [ Google Scholar ]
  • Haynes RB, Sackett DL, Guyatt GH, Tugwell P. Clinical epidemiology: how to do clinical practice research. 3rd ed. Philadelphia (PA): Lippincott, Williams & Wilkins; 2006. [ Google Scholar ]
  • Kumar R. Research methodology: a step-by-step guide for beginners. 3rd ed. London (UK): Sage; 2010. [ Google Scholar ]
  • Smith FJ. Conducting your pharmacy practice research project. London (UK): Pharmaceutical Press; 2005. [ Google Scholar ]
  • View on publisher site
  • PDF (592.1 KB)
  • Collections

Similar articles

Cited by other articles, links to ncbi databases.

  • Download .nbib .nbib
  • Format: AMA APA MLA NLM

Add to Collections

Public Health Notes

Your partner for better health, hypothesis in research: definition, types and importance .

April 21, 2020 Kusum Wagle Epidemiology 0

hypothesis in research work

Table of Contents

What is Hypothesis?

  • Hypothesis is a logical prediction of certain occurrences without the support of empirical confirmation or evidence.
  • In scientific terms, it is a tentative theory or testable statement about the relationship between two or more variables i.e. independent and dependent variable.

Different Types of Hypothesis:

1. Simple Hypothesis:

  • A Simple hypothesis is also known as composite hypothesis.
  • In simple hypothesis all parameters of the distribution are specified.
  • It predicts relationship between two variables i.e. the dependent and the independent variable

2. Complex Hypothesis:

  • A Complex hypothesis examines relationship between two or more independent variables and two or more dependent variables.

3. Working or Research Hypothesis:

  • A research hypothesis is a specific, clear prediction about the possible outcome of a scientific research study based on specific factors of the population.

4. Null Hypothesis:

  • A null hypothesis is a general statement which states no relationship between two variables or two phenomena. It is usually denoted by H 0 .

5. Alternative Hypothesis:

  • An alternative hypothesis is a statement which states some statistical significance between two phenomena. It is usually denoted by H 1 or H A .

6. Logical Hypothesis:

  • A logical hypothesis is a planned explanation holding limited evidence.

7. Statistical Hypothesis:

  • A statistical hypothesis, sometimes called confirmatory data analysis, is an assumption about a population parameter.

Although there are different types of hypothesis, the most commonly and used hypothesis are Null hypothesis and alternate hypothesis . So, what is the difference between null hypothesis and alternate hypothesis? Let’s have a look:

Major Differences Between Null Hypothesis and Alternative Hypothesis:

Importance of hypothesis:.

  • It ensures the entire research methodologies are scientific and valid.
  • It helps to assume the probability of research failure and progress.
  • It helps to provide link to the underlying theory and specific research question.
  • It helps in data analysis and measure the validity and reliability of the research.
  • It provides a basis or evidence to prove the validity of the research.
  • It helps to describe research study in concrete terms rather than theoretical terms.

Characteristics of Good Hypothesis:

  • Should be simple.
  • Should be specific.
  • Should be stated in advance.

References and For More Information:

https://ocw.jhsph.edu/courses/StatisticalReasoning1/PDFs/2009/BiostatisticsLecture4.pdf

https://keydifferences.com/difference-between-type-i-and-type-ii-errors.html

https://www.khanacademy.org/math/ap-statistics/tests-significance-ap/error-probabilities-power/a/consequences-errors-significance

https://stattrek.com/hypothesis-test/hypothesis-testing.aspx

http://davidmlane.com/hyperstat/A2917.html

https://study.com/academy/lesson/what-is-a-hypothesis-definition-lesson-quiz.html

https://keydifferences.com/difference-between-null-and-alternative-hypothesis.html

https://blog.minitab.com/blog/adventures-in-statistics-2/understanding-hypothesis-tests-why-we-need-to-use-hypothesis-tests-in-statistics

  • Characteristics of Good Hypothesis
  • complex hypothesis
  • example of alternative hypothesis
  • example of null hypothesis
  • how is null hypothesis different to alternative hypothesis
  • Importance of Hypothesis
  • null hypothesis vs alternate hypothesis
  • simple hypothesis
  • Types of Hypotheses
  • what is alternate hypothesis
  • what is alternative hypothesis
  • what is hypothesis?
  • what is logical hypothesis
  • what is null hypothesis
  • what is research hypothesis
  • what is statistical hypothesis
  • why is hypothesis necessary

' src=

Copyright © 2024 | WordPress Theme by MH Themes

  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition
  • Language Editing Services
  • Translation Services

Elsevier QRcode Wechat

Step-by-Step Guide: How to Craft a Strong Research Hypothesis

  • 4 minute read
  • 426.2K views

Table of Contents

A research hypothesis is a concise statement about the expected result of an experiment or project. In many ways, a research hypothesis represents the starting point for a scientific endeavor, as it establishes a tentative assumption that is eventually substantiated or falsified, ultimately improving our certainty about the subject investigated.   

To help you with this and ease the process, in this article, we discuss the purpose of research hypotheses and list the most essential qualities of a compelling hypothesis. Let’s find out!  

How to Craft a Research Hypothesis  

Crafting a research hypothesis begins with a comprehensive literature review to identify a knowledge gap in your field. Once you find a question or problem, come up with a possible answer or explanation, which becomes your hypothesis. Now think about the specific methods of experimentation that can prove or disprove the hypothesis, which ultimately lead to the results of the study.   

Enlisted below are some standard formats in which you can formulate a hypothesis¹ :  

  • A hypothesis can use the if/then format when it seeks to explore the correlation between two variables in a study primarily.  

Example: If administered drug X, then patients will experience reduced fatigue from cancer treatment.  

  • A hypothesis can adopt when X/then Y format when it primarily aims to expose a connection between two variables  

Example: When workers spend a significant portion of their waking hours in sedentary work , then they experience a greater frequency of digestive problems.  

  • A hypothesis can also take the form of a direct statement.  

Example: Drug X and drug Y reduce the risk of cognitive decline through the same chemical pathways  

What are the Features of an Effective Hypothesis?  

Hypotheses in research need to satisfy specific criteria to be considered scientifically rigorous. Here are the most notable qualities of a strong hypothesis:  

  • Testability: Ensure the hypothesis allows you to work towards observable and testable results.  
  • Brevity and objectivity: Present your hypothesis as a brief statement and avoid wordiness.  
  • Clarity and Relevance: The hypothesis should reflect a clear idea of what we know and what we expect to find out about a phenomenon and address the significant knowledge gap relevant to a field of study.   

Understanding Null and Alternative Hypotheses in Research  

There are two types of hypotheses used commonly in research that aid statistical analyses. These are known as the null hypothesis and the alternative hypothesis . A null hypothesis is a statement assumed to be factual in the initial phase of the study.   

For example, if a researcher is testing the efficacy of a new drug, then the null hypothesis will posit that the drug has no benefits compared to an inactive control or placebo . Suppose the data collected through a drug trial leads a researcher to reject the null hypothesis. In that case, it is considered to substantiate the alternative hypothesis in the above example, that the new drug provides benefits compared to the placebo.  

Let’s take a closer look at the null hypothesis and alternative hypothesis with two more examples:  

Null Hypothesis:  

The rate of decline in the number of species in habitat X in the last year is the same as in the last 100 years when controlled for all factors except the recent wildfires.  

In the next experiment, the researcher will experimentally reject this null hypothesis in order to confirm the following alternative hypothesis :  

The rate of decline in the number of species in habitat X in the last year is different from the rate of decline in the last 100 years when controlled for all factors other than the recent wildfires.  

In the pair of null and alternative hypotheses stated above, a statistical comparison of the rate of species decline over a century and the preceding year will help the research experimentally test the null hypothesis, helping to draw scientifically valid conclusions about two factors—wildfires and species decline.   

We also recommend that researchers pay attention to contextual echoes and connections when writing research hypotheses. Research hypotheses are often closely linked to the introduction ² , such as the context of the study, and can similarly influence the reader’s judgment of the relevance and validity of the research hypothesis.  

Seasoned experts, such as professionals at Elsevier Language Services, guide authors on how to best embed a hypothesis within an article so that it communicates relevance and credibility. Contact us if you want help in ensuring readers find your hypothesis robust and unbiased.  

References  

  • Hypotheses – The University Writing Center. (n.d.). https://writingcenter.tamu.edu/writing-speaking-guides/hypotheses  
  • Shaping the research question and hypothesis. (n.d.). Students. https://students.unimelb.edu.au/academic-skills/graduate-research-services/writing-thesis-sections-part-2/shaping-the-research-question-and-hypothesis  

Systematic Literature Review or Literature Review

Systematic Literature Review or Literature Review?

Problem Statement

How to Write an Effective Problem Statement for Your Research Paper

You may also like.

Academic paper format

Submission 101: What format should be used for academic papers?

Being Mindful of Tone and Structure in Artilces

Page-Turner Articles are More Than Just Good Arguments: Be Mindful of Tone and Structure!

How to Ensure Inclusivity in Your Scientific Writing

A Must-see for Researchers! How to Ensure Inclusivity in Your Scientific Writing

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

Input your search keywords and press Enter.

IMAGES

  1. Research Hypothesis: Definition, Types, Examples and Quick Tips (2022)

    hypothesis in research work

  2. 13 Different Types of Hypothesis (2024)

    hypothesis in research work

  3. SOLUTION: How to write research hypothesis

    hypothesis in research work

  4. What is a Research Hypothesis and How to Write a Hypothesis

    hypothesis in research work

  5. How to Write a Hypothesis: The Ultimate Guide with Examples

    hypothesis in research work

  6. How to Write a Hypothesis

    hypothesis in research work

COMMENTS

  1. How to Write a Strong Hypothesis

    A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

  2. What Is A Research Hypothesis? A Simple Definition

    A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable. So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria.

  3. The Role of Hypotheses in Research Studies: A Simple Guide

    Essentially, a hypothesis is a tentative statement that predicts the relationship between two or more variables in a research study. It is usually derived from a theoretical framework or previous empirical evidence, and it guides the design, data collection, and data analysis of the study.

  4. Research Hypothesis: Definition, Types, Examples and Quick Tips

    A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

  5. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

  6. What is a Hypothesis

    In research, a hypothesis is a clear, testable statement predicting the relationship between variables or the outcome of a study. Hypotheses form the foundation of scientific inquiry, providing a direction for investigation and guiding the data collection and analysis process.

  7. How to Write a Hypothesis in 6 Steps, With Examples

    A hypothesis is a statement that explains the predictions and reasoning of your research—an "educated guess" about how your scientific experiments will end.

  8. Research: Articulating Questions, Generating Hypotheses, and Choosing

    The hypothesis is a tentative prediction of the nature and direction of relationships between sets of data, phrased as a declarative statement. Therefore, hypotheses are really only required for studies that address relational or causal research questions.

  9. Hypothesis in Research: Definition, Types And Importance

    3. Working or Research Hypothesis: A research hypothesis is a specific, clear prediction about the possible outcome of a scientific research study based on specific factors of the population. 4. Null Hypothesis: A null hypothesis is a general statement which states no relationship between two variables or two phenomena. It is usually denoted by ...

  10. Step-by-Step Guide: How to Craft a Strong Research Hypothesis

    Crafting a research hypothesis begins with a comprehensive literature review to identify a knowledge gap in your field. Once you find a question or problem, come up with a possible answer or explanation, which becomes your hypothesis.