U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.11(2); 2019 Feb

Logo of cureus

Planning and Conducting Clinical Research: The Whole Process

Boon-how chew.

1 Family Medicine, Universiti Putra Malaysia, Serdang, MYS

The goal of this review was to present the essential steps in the entire process of clinical research. Research should begin with an educated idea arising from a clinical practice issue. A research topic rooted in a clinical problem provides the motivation for the completion of the research and relevancy for affecting medical practice changes and improvements. The research idea is further informed through a systematic literature review, clarified into a conceptual framework, and defined into an answerable research question. Engagement with clinical experts, experienced researchers, relevant stakeholders of the research topic, and even patients can enhance the research question’s relevance, feasibility, and efficiency. Clinical research can be completed in two major steps: study designing and study reporting. Three study designs should be planned in sequence and iterated until properly refined: theoretical design, data collection design, and statistical analysis design. The design of data collection could be further categorized into three facets: experimental or non-experimental, sampling or census, and time features of the variables to be studied. The ultimate aims of research reporting are to present findings succinctly and timely. Concise, explicit, and complete reporting are the guiding principles in clinical studies reporting.

Introduction and background

Medical and clinical research can be classified in many different ways. Probably, most people are familiar with basic (laboratory) research, clinical research, healthcare (services) research, health systems (policy) research, and educational research. Clinical research in this review refers to scientific research related to clinical practices. There are many ways a clinical research's findings can become invalid or less impactful including ignorance of previous similar studies, a paucity of similar studies, poor study design and implementation, low test agent efficacy, no predetermined statistical analysis, insufficient reporting, bias, and conflicts of interest [ 1 - 4 ]. Scientific, ethical, and moral decadence among researchers can be due to incognizant criteria in academic promotion and remuneration and too many forced studies by amateurs and students for the sake of research without adequate training or guidance [ 2 , 5 - 6 ]. This article will review the proper methods to conduct medical research from the planning stage to submission for publication (Table ​ (Table1 1 ).

a Feasibility and efficiency are considered during the refinement of the research question and adhered to during data collection.

ConceptResearch IdeaResearch QuestionAcquiring DataAnalysisPublicationPractice
ActionsRelevant clinical problem or issuePrimary or secondaryMeasuringPrespecifiedWriting skillsGuidelines
Literature reviewQuantitative or qualitativeMeasuring toolPredeterminedGuidelinesProtocol
Conceptual frameworkCausal or non-causalMeasurementExploratory allowedJournal selectionPolicy
Collaboration with expertsFeasibility Feasibility Strength and direction of the effect estimateResponse to reviewers’ commentsChange
Seek target population’s opinions on the research topicEfficiency Efficiency    
 Theoretical DesignData Collection DesignStatistical design  
 Domain (external validity)Experimental or non-experimentalData cleaning  
 Valid (confounding minimized)Sampling or censusOutlier  
 Precise (good sample size)Time featuresMissing data  
 Pilot study Descriptive  
   Inferential  
   Statistical assumptions  
   Collaboration with statistician  

Epidemiologic studies in clinical and medical fields focus on the effect of a determinant on an outcome [ 7 ]. Measurement errors that happen systematically give rise to biases leading to invalid study results, whereas random measurement errors will cause imprecise reporting of effects. Precision can usually be increased with an increased sample size provided biases are avoided or trivialized. Otherwise, the increased precision will aggravate the biases. Because epidemiologic, clinical research focuses on measurement, measurement errors are addressed throughout the research process. Obtaining the most accurate estimate of a treatment effect constitutes the whole business of epidemiologic research in clinical practice. This is greatly facilitated by clinical expertise and current scientific knowledge of the research topic. Current scientific knowledge is acquired through literature reviews or in collaboration with an expert clinician. Collaboration and consultation with an expert clinician should also include input from the target population to confirm the relevance of the research question. The novelty of a research topic is less important than the clinical applicability of the topic. Researchers need to acquire appropriate writing and reporting skills from the beginning of their careers, and these skills should improve with persistent use and regular reviewing of published journal articles. A published clinical research study stands on solid scientific ground to inform clinical practice given the article has passed through proper peer-reviews, revision, and content improvement.

Systematic literature reviews

Systematic literature reviews of published papers will inform authors of the existing clinical evidence on a research topic. This is an important step to reduce wasted efforts and evaluate the planned study [ 8 ]. Conducting a systematic literature review is a well-known important step before embarking on a new study [ 9 ]. A rigorously performed and cautiously interpreted systematic review that includes in-process trials can inform researchers of several factors [ 10 ]. Reviewing the literature will inform the choice of recruitment methods, outcome measures, questionnaires, intervention details, and statistical strategies – useful information to increase the study’s relevance, value, and power. A good review of previous studies will also provide evidence of the effects of an intervention that may or may not be worthwhile; this would suggest either no further studies are warranted or that further study of the intervention is needed. A review can also inform whether a larger and better study is preferable to an additional small study. Reviews of previously published work may yield few studies or low-quality evidence from small or poorly designed studies on certain intervention or observation; this may encourage or discourage further research or prompt consideration of a first clinical trial.

Conceptual framework

The result of a literature review should include identifying a working conceptual framework to clarify the nature of the research problem, questions, and designs, and even guide the latter discussion of the findings and development of possible solutions. Conceptual frameworks represent ways of thinking about a problem or how complex things work the way they do [ 11 ]. Different frameworks will emphasize different variables and outcomes, and their inter-relatedness. Each framework highlights or emphasizes different aspects of a problem or research question. Often, any single conceptual framework presents only a partial view of reality [ 11 ]. Furthermore, each framework magnifies certain elements of the problem. Therefore, a thorough literature search is warranted for authors to avoid repeating the same research endeavors or mistakes. It may also help them find relevant conceptual frameworks including those that are outside one’s specialty or system. 

Conceptual frameworks can come from theories with well-organized principles and propositions that have been confirmed by observations or experiments. Conceptual frameworks can also come from models derived from theories, observations or sets of concepts or even evidence-based best practices derived from past studies [ 11 ].

Researchers convey their assumptions of the associations of the variables explicitly in the conceptual framework to connect the research to the literature. After selecting a single conceptual framework or a combination of a few frameworks, a clinical study can be completed in two fundamental steps: study design and study report. Three study designs should be planned in sequence and iterated until satisfaction: the theoretical design, data collection design, and statistical analysis design [ 7 ]. 

Study designs

Theoretical Design

Theoretical design is the next important step in the research process after a literature review and conceptual framework identification. While the theoretical design is a crucial step in research planning, it is often dealt with lightly because of the more alluring second step (data collection design). In the theoretical design phase, a research question is designed to address a clinical problem, which involves an informed understanding based on the literature review and effective collaboration with the right experts and clinicians. A well-developed research question will have an initial hypothesis of the possible relationship between the explanatory variable/exposure and the outcome. This will inform the nature of the study design, be it qualitative or quantitative, primary or secondary, and non-causal or causal (Figure ​ (Figure1 1 ).

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i01.jpg

A study is qualitative if the research question aims to explore, understand, describe, discover or generate reasons underlying certain phenomena. Qualitative studies usually focus on a process to determine how and why things happen [ 12 ]. Quantitative studies use deductive reasoning, and numerical statistical quantification of the association between groups on data often gathered during experiments [ 13 ]. A primary clinical study is an original study gathering a new set of patient-level data. Secondary research draws on the existing available data and pooling them into a larger database to generate a wider perspective or a more powerful conclusion. Non-causal or descriptive research aims to identify the determinants or associated factors for the outcome or health condition, without regard for causal relationships. Causal research is an exploration of the determinants of an outcome while mitigating confounding variables. Table ​ Table2 2 shows examples of non-causal (e.g., diagnostic and prognostic) and causal (e.g., intervention and etiologic) clinical studies. Concordance between the research question, its aim, and the choice of theoretical design will provide a strong foundation and the right direction for the research process and path. 

Research Category Study Title
Diagnostic Plasma Concentration of B-type Natriuretic Peptide (BNP) in the Diagnosis of Left Ventricular Dysfunction
The Centor and McIsaac Scores and the Group A Streptococcal Pharyngitis
Prognostic The Apgar Score and Infant Mortality
SCORE (Systematic COronary Risk Evaluation) for the Estimation of Ten-Year Risk of Fatal Cardiovascular Disease
Intervention Dexamethasone in Very Low Birth Weight Infants
Bariatric Surgery of Obesity in Type 2 Diabetes and Metabolic Syndrome
Etiologic Thalidomide and Reduction Deformities of the Limbs
Work Stress and Risk of Cardiovascular Mortality

A problem in clinical epidemiology is phrased in a mathematical relationship below, where the outcome is a function of the determinant (D) conditional on the extraneous determinants (ED) or more commonly known as the confounding factors [ 7 ]:

For non-causal research, Outcome = f (D1, D2…Dn) For causal research, Outcome = f (D | ED)

A fine research question is composed of at least three components: 1) an outcome or a health condition, 2) determinant/s or associated factors to the outcome, and 3) the domain. The outcome and the determinants have to be clearly conceptualized and operationalized as measurable variables (Table ​ (Table3; 3 ; PICOT [ 14 ] and FINER [ 15 ]). The study domain is the theoretical source population from which the study population will be sampled, similar to the wording on a drug package insert that reads, “use this medication (study results) in people with this disease” [ 7 ].

Acronym Explanation
P = Patient (or the domain)
I = Intervention or treatment (or the determinants in non-experimental)
C = Comparison (only in experimental)
O = Outcome
T = Time describes the duration of data collection
F = Feasible with the current and/or potential available resources
I = Important and interesting to current clinical practice and to you, respectively
N = Novel and adding to the existing corpus of scientific knowledge
E = Ethical research conducted without harm to participants and institutions
R = Relevant to as many parties as possible, not only to your own practice

The interpretation of study results as they apply to wider populations is known as generalization, and generalization can either be statistical or made using scientific inferences [ 16 ]. Generalization supported by statistical inferences is seen in studies on disease prevalence where the sample population is representative of the source population. By contrast, generalizations made using scientific inferences are not bound by the representativeness of the sample in the study; rather, the generalization should be plausible from the underlying scientific mechanisms as long as the study design is valid and nonbiased. Scientific inferences and generalizations are usually the aims of causal studies. 

Confounding: Confounding is a situation where true effects are obscured or confused [ 7 , 16 ]. Confounding variables or confounders affect the validity of a study’s outcomes and should be prevented or mitigated in the planning stages and further managed in the analytical stages. Confounders are also known as extraneous determinants in epidemiology due to their inherent and simultaneous relationships to both the determinant and outcome (Figure ​ (Figure2), 2 ), which are usually one-determinant-to-one outcome in causal clinical studies. The known confounders are also called observed confounders. These can be minimized using randomization, restriction, or a matching strategy. Residual confounding has occurred in a causal relationship when identified confounders were not measured accurately. Unobserved confounding occurs when the confounding effect is present as a variable or factor not observed or yet defined and, thus, not measured in the study. Age and gender are almost universal confounders followed by ethnicity and socio-economic status.

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i02.jpg

Confounders have three main characteristics. They are a potential risk factor for the disease, associated with the determinant of interest, and should not be an intermediate variable between the determinant and the outcome or a precursor to the determinant. For example, a sedentary lifestyle is a cause for acute coronary syndrome (ACS), and smoking could be a confounder but not cardiorespiratory unfitness (which is an intermediate factor between a sedentary lifestyle and ACS). For patients with ACS, not having a pair of sports shoes is not a confounder – it is a correlate for the sedentary lifestyle. Similarly, depression would be a precursor, not a confounder.

Sample size consideration: Sample size calculation provides the required number of participants to be recruited in a new study to detect true differences in the target population if they exist. Sample size calculation is based on three facets: an estimated difference in group sizes, the probability of α (Type I) and β (Type II) errors chosen based on the nature of the treatment or intervention, and the estimated variability (interval data) or proportion of the outcome (nominal data) [ 17 - 18 ]. The clinically important effect sizes are determined based on expert consensus or patients’ perception of benefit. Value and economic consideration have increasingly been included in sample size estimations. Sample size and the degree to which the sample represents the target population affect the accuracy and generalization of a study’s reported effects. 

Pilot study: Pilot studies assess the feasibility of the proposed research procedures on small sample size. Pilot studies test the efficiency of participant recruitment with minimal practice or service interruptions. Pilot studies should not be conducted to obtain a projected effect size for a larger study population because, in a typical pilot study, the sample size is small, leading to a large standard error of that effect size. This leads to bias when projected for a large population. In the case of underestimation, this could lead to inappropriately terminating the full-scale study. As the small pilot study is equally prone to bias of overestimation of the effect size, this would lead to an underpowered study and a failed full-scale study [ 19 ]. 

The Design of Data Collection

The “perfect” study design in the theoretical phase now faces the practical and realistic challenges of feasibility. This is the step where different methods for data collection are considered, with one selected as the most appropriate based on the theoretical design along with feasibility and efficiency. The goal of this stage is to achieve the highest possible validity with the lowest risk of biases given available resources and existing constraints. 

In causal research, data on the outcome and determinants are collected with utmost accuracy via a strict protocol to maximize validity and precision. The validity of an instrument is defined as the degree of fidelity of the instrument, measuring what it is intended to measure, that is, the results of the measurement correlate with the true state of an occurrence. Another widely used word for validity is accuracy. Internal validity refers to the degree of accuracy of a study’s results to its own study sample. Internal validity is influenced by the study designs, whereas the external validity refers to the applicability of a study’s result in other populations. External validity is also known as generalizability and expresses the validity of assuming the similarity and comparability between the study population and the other populations. Reliability of an instrument denotes the extent of agreeableness of the results of repeated measurements of an occurrence by that instrument at a different time, by different investigators or in a different setting. Other terms that are used for reliability include reproducibility and precision. Preventing confounders by identifying and including them in data collection will allow statistical adjustment in the later analyses. In descriptive research, outcomes must be confirmed with a referent standard, and the determinants should be as valid as those found in real clinical practice.

Common designs for data collection include cross-sectional, case-control, cohort, and randomized controlled trials (RCTs). Many other modern epidemiology study designs are based on these classical study designs such as nested case-control, case-crossover, case-control without control, and stepwise wedge clustered RCTs. A cross-sectional study is typically a snapshot of the study population, and an RCT is almost always a prospective study. Case-control and cohort studies can be retrospective or prospective in data collection. The nested case-control design differs from the traditional case-control design in that it is “nested” in a well-defined cohort from which information on the cohorts can be obtained. This design also satisfies the assumption that cases and controls represent random samples of the same study base. Table ​ Table4 4 provides examples of these data collection designs.

Data Collection DesignsStudy Title
Cross-sectionalThe National Health and Morbidity Survey (NHMS)
The National Health and Nutrition Examination Survey (NHANES)
CohortFramingham Heart Study
The Malaysian Cohort (TMC) project
Case-controlA Case-Control Study of the Effectiveness of Bicycle Safety Helmets
Open-Angle Glaucoma and Ocular Hypertension: the Long Island Glaucoma Case-Control Study
Nested case-controlNurses' Health Study on Plasma Adipokines and Endometriosis Risk
Physicians' Health Study Plasma Homocysteine and Risk of Myocardial Infarction
Randomized controlled trialThe Women’s Health Initiative
U.K. Prospective Diabetes Study
Cross-overIntranasal-agonist in Allergic Rhinitis Published in the Allergy in 2000
Effect of Palm-based Tocotrienols and Tocopherol Mixture Supplementation on Platelet Aggregation in Subjects with Metabolic Syndrome

Additional aspects in data collection: No single design of data collection for any research question as stated in the theoretical design will be perfect in actual conduct. This is because of myriad issues facing the investigators such as the dynamic clinical practices, constraints of time and budget, the urgency for an answer to the research question, and the ethical integrity of the proposed experiment. Therefore, feasibility and efficiency without sacrificing validity and precision are important considerations in data collection design. Therefore, data collection design requires additional consideration in the following three aspects: experimental/non-experimental, sampling, and timing [ 7 ]:

Experimental or non-experimental: Non-experimental research (i.e., “observational”), in contrast to experimental, involves data collection of the study participants in their natural or real-world environments. Non-experimental researches are usually the diagnostic and prognostic studies with cross-sectional in data collection. The pinnacle of non-experimental research is the comparative effectiveness study, which is grouped with other non-experimental study designs such as cross-sectional, case-control, and cohort studies [ 20 ]. It is also known as the benchmarking-controlled trials because of the element of peer comparison (using comparable groups) in interpreting the outcome effects [ 20 ]. Experimental study designs are characterized by an intervention on a selected group of the study population in a controlled environment, and often in the presence of a similar group of the study population to act as a comparison group who receive no intervention (i.e., the control group). Thus, the widely known RCT is classified as an experimental design in data collection. An experimental study design without randomization is referred to as a quasi-experimental study. Experimental studies try to determine the efficacy of a new intervention on a specified population. Table ​ Table5 5 presents the advantages and disadvantages of experimental and non-experimental studies [ 21 ].

a May be an issue in cross-sectional studies that require a long recall to the past such as dietary patterns, antenatal events, and life experiences during childhood.

Non-experimentalExperimental
Advantages
Quick results are possibleComparable groups
Relatively less costlyHawthorne and placebo effects mitigated
No recall bias Straightforward, robust statistical analysis
No time effectsConvincing results as evidence
Real-life data 
Disadvantages
Observed, unobserved, and residual confoundingExpensive
 Time-consuming
 Overly controlled environment
 Loss to follow-up
 Random allocation of potentially harmful treatment may not be ethically permissible

Once an intervention yields a proven effect in an experimental study, non-experimental and quasi-experimental studies can be used to determine the intervention’s effect in a wider population and within real-world settings and clinical practices. Pragmatic or comparative effectiveness are the usual designs used for data collection in these situations [ 22 ].

Sampling/census: Census is a data collection on the whole source population (i.e., the study population is the source population). This is possible when the defined population is restricted to a given geographical area. A cohort study uses the census method in data collection. An ecologic study is a cohort study that collects summary measures of the study population instead of individual patient data. However, many studies sample from the source population and infer the results of the study to the source population for feasibility and efficiency because adequate sampling provides similar results to the census of the whole population. Important aspects of sampling in research planning are sample size and representation of the population. Sample size calculation accounts for the number of participants needed to be in the study to discover the actual association between the determinant and outcome. Sample size calculation relies on the primary objective or outcome of interest and is informed by the estimated possible differences or effect size from previous similar studies. Therefore, the sample size is a scientific estimation for the design of the planned study.

A sampling of participants or cases in a study can represent the study population and the larger population of patients in that disease space, but only in prevalence, diagnostic, and prognostic studies. Etiologic and interventional studies do not share this same level of representation. A cross-sectional study design is common for determining disease prevalence in the population. Cross-sectional studies can also determine the referent ranges of variables in the population and measure change over time (e.g., repeated cross-sectional studies). Besides being cost- and time-efficient, cross-sectional studies have no loss to follow-up; recall bias; learning effect on the participant; or variability over time in equipment, measurement, and technician. A cross-sectional design for an etiologic study is possible when the determinants do not change with time (e.g., gender, ethnicity, genetic traits, and blood groups). 

In etiologic research, comparability between the exposed and the non-exposed groups is more important than sample representation. Comparability between these two groups will provide an accurate estimate of the effect of the exposure (risk factor) on the outcome (disease) and enable valid inference of the causal relation to the domain (the theoretical population). In a case-control study, a sampling of the control group should be taken from the same study population (study base), have similar profiles to the cases (matching) but do not have the outcome seen in the cases. Matching important factors minimizes the confounding of the factors and increases statistical efficiency by ensuring similar numbers of cases and controls in confounders’ strata [ 23 - 24 ]. Nonetheless, perfect matching is neither necessary nor achievable in a case-control study because a partial match could achieve most of the benefits of the perfect match regarding a more precise estimate of odds ratio than statistical control of confounding in unmatched designs [ 25 - 26 ]. Moreover, perfect or full matching can lead to an underestimation of the point estimates [ 27 - 28 ].

Time feature: The timing of data collection for the determinant and outcome characterizes the types of studies. A cross-sectional study has the axis of time zero (T = 0) for both the determinant and the outcome, which separates it from all other types of research that have time for the outcome T > 0. Retrospective or prospective studies refer to the direction of data collection. In retrospective studies, information on the determinant and outcome have been collected or recorded before. In prospective studies, this information will be collected in the future. These terms should not be used to describe the relationship between the determinant and the outcome in etiologic studies. Time of exposure to the determinant, the time of induction, and the time at risk for the outcome are important aspects to understand. Time at risk is the period of time exposed to the determinant risk factors. Time of induction is the time from the sufficient exposure to the risk or causal factors to the occurrence of a disease. The latent period is when the occurrence of a disease without manifestation of the disease such as in “silence” diseases for example cancers, hypertension and type 2 diabetes mellitus which is detected from screening practices. Figure ​ Figure3 3 illustrates the time features of a variable. Variable timing is important for accurate data capture. 

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i03.jpg

The Design of Statistical Analysis

Statistical analysis of epidemiologic data provides the estimate of effects after correcting for biases (e.g., confounding factors) measures the variability in the data from random errors or chance [ 7 , 16 , 29 ]. An effect estimate gives the size of an association between the studied variables or the level of effectiveness of an intervention. This quantitative result allows for comparison and assessment of the usefulness and significance of the association or the intervention between studies. This significance must be interpreted with a statistical model and an appropriate study design. Random errors could arise in the study resulting from unexplained personal choices by the participants. Random error is, therefore, when values or units of measurement between variables change in non-concerted or non-directional manner. Conversely, when these values or units of measurement between variables change in a concerted or directional manner, we note a significant relationship as shown by statistical significance. 

Variability: Researchers almost always collect the needed data through a sampling of subjects/participants from a population instead of a census. The process of sampling or multiple sampling in different geographical regions or over different periods contributes to varied information due to the random inclusion of different participants and chance occurrence. This sampling variation becomes the focus of statistics when communicating the degree and intensity of variation in the sampled data and the level of inference in the population. Sampling variation can be influenced profoundly by the total number of participants and the width of differences of the measured variable (standard deviation). Hence, the characteristics of the participants, measurements and sample size are all important factors in planning a study.

Statistical strategy: Statistical strategy is usually determined based on the theoretical and data collection designs. Use of a prespecified statistical strategy (including the decision to dichotomize any continuous data at certain cut-points, sub-group analysis or sensitive analyses) is recommended in the study proposal (i.e., protocol) to prevent data dredging and data-driven reports that predispose to bias. The nature of the study hypothesis also dictates whether directional (one-tailed) or non-directional (two-tailed) significance tests are conducted. In most studies, two-sided tests are used except in specific instances when unidirectional hypotheses may be appropriate (e.g., in superiority or non-inferiority trials). While data exploration is discouraged, epidemiological research is, by nature of its objectives, statistical research. Hence, it is acceptable to report the presence of persistent associations between any variables with plausible underlying mechanisms during the exploration of the data. The statistical methods used to produce the results should be explicitly explained. Many different statistical tests are used to handle various kinds of data appropriately (e.g., interval vs discrete), and/or the various distribution of the data (e.g., normally distributed or skewed). For additional details on statistical explanations and underlying concepts of statistical tests, readers are recommended the references as cited in this sentence [ 30 - 31 ]. 

Steps in statistical analyses: Statistical analysis begins with checking for data entry errors. Duplicates are eliminated, and proper units should be confirmed. Extremely low, high or suspicious values are confirmed from the source data again. If this is not possible, this is better classified as a missing value. However, if the unverified suspicious data are not obviously wrong, they should be further examined as an outlier in the analysis. The data checking and cleaning enables the analyst to establish a connection with the raw data and to anticipate possible results from further analyses. This initial step involves descriptive statistics that analyze central tendency (i.e., mode, median, and mean) and dispersion (i.e., (minimum, maximum, range, quartiles, absolute deviation, variance, and standard deviation) of the data. Certain graphical plotting such as scatter plot, a box-whiskers plot, histogram or normal Q-Q plot are helpful at this stage to verify data normality in distribution. See Figure ​ Figure4 4 for the statistical tests available for analyses of different types of data.

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i04.jpg

Once data characteristics are ascertained, further statistical tests are selected. The analytical strategy sometimes involves the transformation of the data distribution for the selected tests (e.g., log, natural log, exponential, quadratic) or for checking the robustness of the association between the determinants and their outcomes. This step is also referred to as inferential statistics whereby the results are about hypothesis testing and generalization to the wider population that the study’s sampled participants represent. The last statistical step is checking whether the statistical analyses fulfill the assumptions of that particular statistical test and model to avoid violation and misleading results. These assumptions include evaluating normality, variance homogeneity, and residuals included in the final statistical model. Other statistical values such as Akaike information criterion, variance inflation factor/tolerance, and R2 are also considered when choosing the best-fitted models. Transforming raw data could be done, or a higher level of statistical analyses can be used (e.g., generalized linear models and mixed-effect modeling). Successful statistical analysis allows conclusions of the study to fit the data. 

Bayesian and Frequentist statistical frameworks: Most of the current clinical research reporting is based on the frequentist approach and hypotheses testing p values and confidence intervals. The frequentist approach assumes the acquired data are random, attained by random sampling, through randomized experiments or influences, and with random errors. The distribution of the data (its point estimate and confident interval) infers a true parameter in the real population. The major conceptual difference between Bayesian statistics and frequentist statistics is that in Bayesian statistics, the parameter (i.e., the studied variable in the population) is random and the data acquired is real (true or fix). Therefore, the Bayesian approach provides a probability interval for the parameter. The studied parameter is random because it could vary and be affected by prior beliefs, experience or evidence of plausibility. In the Bayesian statistical approach, this prior belief or available knowledge is quantified into a probability distribution and incorporated into the acquired data to get the results (i.e., the posterior distribution). This uses mathematical theory of Bayes’ Theorem to “turn around” conditional probabilities.

The goal of research reporting is to present findings succinctly and timely via conference proceedings or journal publication. Concise and explicit language use, with all the necessary details to enable replication and judgment of the study applicability, are the guiding principles in clinical studies reporting.

Writing for Reporting

Medical writing is very much a technical chore that accommodates little artistic expression. Research reporting in medicine and health sciences emphasize clear and standardized reporting, eschewing adjectives and adverbs extensively used in popular literature. Regularly reviewing published journal articles can familiarize authors with proper reporting styles and help enhance writing skills. Authors should familiarize themselves with standard, concise, and appropriate rhetoric for the intended audience, which includes consideration for journal reviewers, editors, and referees. However, proper language can be somewhat subjective. While each publication may have varying requirements for submission, the technical requirements for formatting an article are usually available via author or submission guidelines provided by the target journal. 

Research reports for publication often contain a title, abstract, introduction, methods, results, discussion, and conclusions section, and authors may want to write each section in sequence. However, best practices indicate the abstract and title should be written last. Authors may find that when writing one section of the report, ideas come to mind that pertains to other sections, so careful note taking is encouraged. One effective approach is to organize and write the result section first, followed by the discussion and conclusions sections. Once these are drafted, write the introduction, abstract, and the title of the report. Regardless of the sequence of writing, the author should begin with a clear and relevant research question to guide the statistical analyses, result interpretation, and discussion. The study findings can be a motivator to propel the author through the writing process, and the conclusions can help the author draft a focused introduction.

Writing for Publication

Specific recommendations on effective medical writing and table generation are available [ 32 ]. One such resource is Effective Medical Writing: The Write Way to Get Published, which is an updated collection of medical writing articles previously published in the Singapore Medical Journal [ 33 ]. The British Medical Journal’s Statistics Notes series also elucidates common and important statistical concepts and usages in clinical studies. Writing guides are also available from individual professional societies, journals, or publishers such as Chest (American College of Physicians) medical writing tips, PLoS Reporting guidelines collection, Springer’s Journal Author Academy, and SAGE’s Research methods [ 34 - 37 ]. Standardized research reporting guidelines often come in the form of checklists and flow diagrams. Table ​ Table6 6 presents a list of reporting guidelines. A full compilation of these guidelines is available at the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) Network website [ 38 ] which aims to improve the reliability and value of medical literature by promoting transparent and accurate reporting of research studies. Publication of the trial protocol in a publicly available database is almost compulsory for publication of the full report in many potential journals.

No. Reporting Guidelines and Checklists
  CONSORT - CONsolidated Standards Of Reporting Trials
A 25-item checklist for reporting of randomized controlled trials. There are appropriate extensions to the CONSORT statement due to variations in the standard trial methodology such as different design aspects (e.g., cluster, pragmatic, non-inferiority and equivalence trials), interventions (e.g., herbals) and data (e.g., harms, including the extension for writing abstracts)
SPIRIT - Standard Protocol Items: Recommendations for Interventional Trials
A 33-item checklist for reporting protocols for randomized controlled trials
  COREQ - COnsolidated criteria for REporting Qualitative research
A 32-item checklist for reporting qualitative research of interviews and focus groups
  STARD - STAndards for the Reporting of Diagnostic accuracy studies
A 25-item checklist for reporting of diagnostic accuracy studies
  PRISMA - Preferred Reporting Items for Systematic reviews and Meta-Analyses
A 27-item checklist for reporting of systematic reviews
PRISMA-P - Preferred Reporting Items for Systematic reviews and Meta-Analyses Protocols
A 17-item checklist for reporting of systematic review and meta-analysis protocols
MOOSE - Meta-analysis Of Observational Studies in Epidemiology
A 35-item checklist for reporting of meta-analyses of observational studies
  STROBE - STrengthening the Reporting of OBservational studies in Epidemiology
For reporting of observational studies in epidemiology
  Checklist for cohort, case-control and cross-sectional studies (combined)
  Checklist for cohort studies
  Checklist for case-control studies
  Checklist for cross-sectional studies
Extensions of the STROBE statement
STROME-ID - STrengthening the Reporting Of Molecular Epidemiology for Infectious Diseases
A 42-item checklist
STREGA - STrengthening the REporting of Genetic Associations
A 22-item checklist for reporting of gene-disease association studies
  CHEERS - Consolidated Health Economic Evaluation Reporting Standards
A 24-item checklist for reporting of health economic evaluations

Graphics and Tables

Graphics and tables should emphasize salient features of the underlying data and should coherently summarize large quantities of information. Although graphics provide a break from dense prose, authors must not forget that these illustrations should be scientifically informative, not decorative. The titles for graphics and tables should be clear, informative, provide the sample size, and use minimal font weight and formatting only to distinguish headings, data entry or to highlight certain results. Provide a consistent number of decimal points for the numerical results, and with no more than four for the P value. Most journals prefer cell-delineated tables created using the table function in word processing or spreadsheet programs. Some journals require specific table formatting such as the absence or presence of intermediate horizontal lines between cells.

Decisions of authorship are both sensitive and important and should be made at an early stage by the study’s stakeholders. Guidelines and journals’ instructions to authors abound with authorship qualifications. The guideline on authorship by the International Committee of Medical Journal Editors is widely known and provides a standard used by many medical and clinical journals [ 39 ]. Generally, authors are those who have made major contributions to the design, conduct, and analysis of the study, and who provided critical readings of the manuscript (if not involved directly in manuscript writing). 

Picking a target journal for submission

Once a report has been written and revised, the authors should select a relevant target journal for submission. Authors should avoid predatory journals—publications that do not aim to advance science and disseminate quality research. These journals focus on commercial gain in medical and clinical publishing. Two good resources for authors during journal selection are Think-Check-Submit and the defunct Beall's List of Predatory Publishers and Journals (now archived and maintained by an anonymous third-party) [ 40 , 41 ]. Alternatively, reputable journal indexes such as Thomson Reuters Journal Citation Reports, SCOPUS, MedLine, PubMed, EMBASE, EBSCO Publishing's Electronic Databases are available areas to start the search for an appropriate target journal. Authors should review the journals’ names, aims/scope, and recently published articles to determine the kind of research each journal accepts for publication. Open-access journals almost always charge article publication fees, while subscription-based journals tend to publish without author fees and instead rely on subscription or access fees for the full text of published articles.

Conclusions

Conducting a valid clinical research requires consideration of theoretical study design, data collection design, and statistical analysis design. Proper study design implementation and quality control during data collection ensures high-quality data analysis and can mitigate bias and confounders during statistical analysis and data interpretation. Clear, effective study reporting facilitates dissemination, appreciation, and adoption, and allows the researchers to affect real-world change in clinical practices and care models. Neutral or absence of findings in a clinical study are as important as positive or negative findings. Valid studies, even when they report an absence of expected results, still inform scientific communities of the nature of a certain treatment or intervention, and this contributes to future research, systematic reviews, and meta-analyses. Reporting a study adequately and comprehensively is important for accuracy, transparency, and reproducibility of the scientific work as well as informing readers.

Acknowledgments

The author would like to thank Universiti Putra Malaysia and the Ministry of Higher Education, Malaysia for their support in sponsoring the Ph.D. study and living allowances for Boon-How Chew.

The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

The materials presented in this paper is being organized by the author into a book.

Instant insights, infinite possibilities

How to write a research plan: Step-by-step guide

Last updated

30 January 2024

Reviewed by

Short on time? Get an AI generated summary of this article instead

Today’s businesses and institutions rely on data and analytics to inform their product and service decisions. These metrics influence how organizations stay competitive and inspire innovation. However, gathering data and insights requires carefully constructed research, and every research project needs a roadmap. This is where a research plan comes into play.

Read this step-by-step guide for writing a detailed research plan that can apply to any project, whether it’s scientific, educational, or business-related.

  • What is a research plan?

A research plan is a documented overview of a project in its entirety, from end to end. It details the research efforts, participants, and methods needed, along with any anticipated results. It also outlines the project’s goals and mission, creating layers of steps to achieve those goals within a specified timeline.

Without a research plan, you and your team are flying blind, potentially wasting time and resources to pursue research without structured guidance.

The principal investigator, or PI, is responsible for facilitating the research oversight. They will create the research plan and inform team members and stakeholders of every detail relating to the project. The PI will also use the research plan to inform decision-making throughout the project.

  • Why do you need a research plan?

Create a research plan before starting any official research to maximize every effort in pursuing and collecting the research data. Crucially, the plan will model the activities needed at each phase of the research project .

Like any roadmap, a research plan serves as a valuable tool providing direction for those involved in the project—both internally and externally. It will keep you and your immediate team organized and task-focused while also providing necessary definitions and timelines so you can execute your project initiatives with full understanding and transparency.

External stakeholders appreciate a working research plan because it’s a great communication tool, documenting progress and changing dynamics as they arise. Any participants of your planned research sessions will be informed about the purpose of your study, while the exercises will be based on the key messaging outlined in the official plan.

Here are some of the benefits of creating a research plan document for every project:

Project organization and structure

Well-informed participants

All stakeholders and teams align in support of the project

Clearly defined project definitions and purposes

Distractions are eliminated, prioritizing task focus

Timely management of individual task schedules and roles

Costly reworks are avoided

  • What should a research plan include?

The different aspects of your research plan will depend on the nature of the project. However, most official research plan documents will include the core elements below. Each aims to define the problem statement , devising an official plan for seeking a solution.

Specific project goals and individual objectives

Ideal strategies or methods for reaching those goals

Required resources

Descriptions of the target audience, sample sizes , demographics, and scopes

Key performance indicators (KPIs)

Project background

Research and testing support

Preliminary studies and progress reporting mechanisms

Cost estimates and change order processes

Depending on the research project’s size and scope, your research plan could be brief—perhaps only a few pages of documented plans. Alternatively, it could be a fully comprehensive report. Either way, it’s an essential first step in dictating your project’s facilitation in the most efficient and effective way.

  • How to write a research plan for your project

When you start writing your research plan, aim to be detailed about each step, requirement, and idea. The more time you spend curating your research plan, the more precise your research execution efforts will be.

Account for every potential scenario, and be sure to address each and every aspect of the research.

Consider following this flow to develop a great research plan for your project:

Define your project’s purpose

Start by defining your project’s purpose. Identify what your project aims to accomplish and what you are researching. Remember to use clear language.

Thinking about the project’s purpose will help you set realistic goals and inform how you divide tasks and assign responsibilities. These individual tasks will be your stepping stones to reach your overarching goal.

Additionally, you’ll want to identify the specific problem, the usability metrics needed, and the intended solutions.

Know the following three things about your project’s purpose before you outline anything else:

What you’re doing

Why you’re doing it

What you expect from it

Identify individual objectives

With your overarching project objectives in place, you can identify any individual goals or steps needed to reach those objectives. Break them down into phases or steps. You can work backward from the project goal and identify every process required to facilitate it.

Be mindful to identify each unique task so that you can assign responsibilities to various team members. At this point in your research plan development, you’ll also want to assign priority to those smaller, more manageable steps and phases that require more immediate or dedicated attention.

Select research methods

Once you have outlined your goals, objectives, steps, and tasks, it’s time to drill down on selecting research methods . You’ll want to leverage specific research strategies and processes. When you know what methods will help you reach your goals, you and your teams will have direction to perform and execute your assigned tasks.

Research methods might include any of the following:

User interviews : this is a qualitative research method where researchers engage with participants in one-on-one or group conversations. The aim is to gather insights into their experiences, preferences, and opinions to uncover patterns, trends, and data.

Field studies : this approach allows for a contextual understanding of behaviors, interactions, and processes in real-world settings. It involves the researcher immersing themselves in the field, conducting observations, interviews, or experiments to gather in-depth insights.

Card sorting : participants categorize information by sorting content cards into groups based on their perceived similarities. You might use this process to gain insights into participants’ mental models and preferences when navigating or organizing information on websites, apps, or other systems.

Focus groups : use organized discussions among select groups of participants to provide relevant views and experiences about a particular topic.

Diary studies : ask participants to record their experiences, thoughts, and activities in a diary over a specified period. This method provides a deeper understanding of user experiences, uncovers patterns, and identifies areas for improvement.

Five-second testing: participants are shown a design, such as a web page or interface, for just five seconds. They then answer questions about their initial impressions and recall, allowing you to evaluate the design’s effectiveness.

Surveys : get feedback from participant groups with structured surveys. You can use online forms, telephone interviews, or paper questionnaires to reveal trends, patterns, and correlations.

Tree testing : tree testing involves researching web assets through the lens of findability and navigability. Participants are given a textual representation of the site’s hierarchy (the “tree”) and asked to locate specific information or complete tasks by selecting paths.

Usability testing : ask participants to interact with a product, website, or application to evaluate its ease of use. This method enables you to uncover areas for improvement in digital key feature functionality by observing participants using the product.

Live website testing: research and collect analytics that outlines the design, usability, and performance efficiencies of a website in real time.

There are no limits to the number of research methods you could use within your project. Just make sure your research methods help you determine the following:

What do you plan to do with the research findings?

What decisions will this research inform? How can your stakeholders leverage the research data and results?

Recruit participants and allocate tasks

Next, identify the participants needed to complete the research and the resources required to complete the tasks. Different people will be proficient at different tasks, and having a task allocation plan will allow everything to run smoothly.

Prepare a thorough project summary

Every well-designed research plan will feature a project summary. This official summary will guide your research alongside its communications or messaging. You’ll use the summary while recruiting participants and during stakeholder meetings. It can also be useful when conducting field studies.

Ensure this summary includes all the elements of your research project . Separate the steps into an easily explainable piece of text that includes the following:

An introduction: the message you’ll deliver to participants about the interview, pre-planned questioning, and testing tasks.

Interview questions: prepare questions you intend to ask participants as part of your research study, guiding the sessions from start to finish.

An exit message: draft messaging your teams will use to conclude testing or survey sessions. These should include the next steps and express gratitude for the participant’s time.

Create a realistic timeline

While your project might already have a deadline or a results timeline in place, you’ll need to consider the time needed to execute it effectively.

Realistically outline the time needed to properly execute each supporting phase of research and implementation. And, as you evaluate the necessary schedules, be sure to include additional time for achieving each milestone in case any changes or unexpected delays arise.

For this part of your research plan, you might find it helpful to create visuals to ensure your research team and stakeholders fully understand the information.

Determine how to present your results

A research plan must also describe how you intend to present your results. Depending on the nature of your project and its goals, you might dedicate one team member (the PI) or assume responsibility for communicating the findings yourself.

In this part of the research plan, you’ll articulate how you’ll share the results. Detail any materials you’ll use, such as:

Presentations and slides

A project report booklet

A project findings pamphlet

Documents with key takeaways and statistics

Graphic visuals to support your findings

  • Format your research plan

As you create your research plan, you can enjoy a little creative freedom. A plan can assume many forms, so format it how you see fit. Determine the best layout based on your specific project, intended communications, and the preferences of your teams and stakeholders.

Find format inspiration among the following layouts:

Written outlines

Narrative storytelling

Visual mapping

Graphic timelines

Remember, the research plan format you choose will be subject to change and adaptation as your research and findings unfold. However, your final format should ideally outline questions, problems, opportunities, and expectations.

  • Research plan example

Imagine you’ve been tasked with finding out how to get more customers to order takeout from an online food delivery platform. The goal is to improve satisfaction and retain existing customers. You set out to discover why more people aren’t ordering and what it is they do want to order or experience. 

You identify the need for a research project that helps you understand what drives customer loyalty . But before you jump in and start calling past customers, you need to develop a research plan—the roadmap that provides focus, clarity, and realistic details to the project.

Here’s an example outline of a research plan you might put together:

Project title

Project members involved in the research plan

Purpose of the project (provide a summary of the research plan’s intent)

Objective 1 (provide a short description for each objective)

Objective 2

Objective 3

Proposed timeline

Audience (detail the group you want to research, such as customers or non-customers)

Budget (how much you think it might cost to do the research)

Risk factors/contingencies (any potential risk factors that may impact the project’s success)

Remember, your research plan doesn’t have to reinvent the wheel—it just needs to fit your project’s unique needs and aims.

Customizing a research plan template

Some companies offer research plan templates to help get you started. However, it may make more sense to develop your own customized plan template. Be sure to include the core elements of a great research plan with your template layout, including the following:

Introductions to participants and stakeholders

Background problems and needs statement

Significance, ethics, and purpose

Research methods, questions, and designs

Preliminary beliefs and expectations

Implications and intended outcomes

Realistic timelines for each phase

Conclusion and presentations

How many pages should a research plan be?

Generally, a research plan can vary in length between 500 to 1,500 words. This is roughly three pages of content. More substantial projects will be 2,000 to 3,500 words, taking up four to seven pages of planning documents.

What is the difference between a research plan and a research proposal?

A research plan is a roadmap to success for research teams. A research proposal, on the other hand, is a dissertation aimed at convincing or earning the support of others. Both are relevant in creating a guide to follow to complete a project goal.

What are the seven steps to developing a research plan?

While each research project is different, it’s best to follow these seven general steps to create your research plan:

Defining the problem

Identifying goals

Choosing research methods

Recruiting participants

Preparing the brief or summary

Establishing task timelines

Defining how you will present the findings

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 30 September 2024

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

Planning Your Research

  • First Online: 22 October 2021

Cite this chapter

planning process research paper

  • Jan Recker   ORCID: orcid.org/0000-0002-2072-5792 2  

Part of the book series: Progress in IS ((PROIS))

3432 Accesses

This chapter discusses how to plan a research project. It introduces ways in which a good research question can be identified and specified, and it introduces the different decisions during research design. After explaining the purposes of exploration, rationalization, and validation, the chapter discusses differences in different research methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Alvesson, M., & Sandberg, J. (2011). Generating Research Questions Through Problematization. Academy of Management Review, 36 (2), 247–271.

Google Scholar  

Berente, N., Seidel, S., & Safadi, H. (2019). Data-Driven Computationally-Intensive Theory Development. Information Systems Research, 30 (1), 50–64.

Article   Google Scholar  

Branch, G., & Foster, C. A. (2018). Yes, Flat-Earthers Really Do Exist. Scientific American . Retrieved January 19, 2020 from https://blogs.scientificamerican.com/observations/yes-flat-earthers-really-do-exist/

Centefelli, R. T., & Schwarz, A. (2011). Identifying and Testing the Inhibitors of Technology Usage Intentions. Information Systems Research, 22 (4), 808–823.

Chatman, J. A., & Flynn, F. J. (2005). Full-Cycle Micro-Organizational Behavior Research. Organization Science, 16 (4), 434–447.

Cooper, D. R., & Emory, C. W. (1991). Business Research Methods (4th ed.). Richard D Irwin.

Cooper, H. M. (1982). Scientific Guidelines for Conducting Integrative Research Reviews. Review of Educational Research, 52 (2), 291–302.

Creswell, J. W. (2009). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (3rd ed.). Sage Publications.

Fischer, C., & Gregor, S. (2020). Forms of Reasoning in the Design Science Research Process. In H. Jain, A. P. Sinha, & P. Vitharana (Eds.), Service-Oriented Perspectives in Design Science Research: DESRIST 2011 (Vol. 6629, pp. 17–31). Springer.

Chapter   Google Scholar  

Gable, G. G. (1994). Integrating Case Study and Survey Research Methods: An Example in Information Systems. European Journal of Information Systems, 3 (2), 112–126.

Grant, A. M., & Pollock, T. G. (2011). Publishing in AMJ—Part 3: Setting the Hook. Academy of Management Journal, 54 (5), 873–879.

Kaplan, A. (1998/1964). The Conduct of Inquiry: Methodology for Behavioral Science . Transaction Publishers.

Larsen, K. R. T., & Eargle, D. (2015). Theories Used in IS Research Wiki . University of Colorado. Retrieved May 28, 2021 from https://is.theorizeit.org/

Lazer, D., Pentland, A. P., Adamic, L. A., Aral, S., Barabási, A.-L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., & Van Alstyne, M. (2009). Computational Social Science. Science, 323 (5915), 721–723.

Lee, A. S. (1991). Integrating Positivist and Interpretive Approaches to Organizational Research. Organization Science, 2 (4), 342–365.

Leedy, P. D., & Ormrod, J. E. (2001). Practical Research: Planning and Design (7th ed.). Prentice Hall.

Mertens, W., & Recker, J. (2020). New Guidelines for Null Hypothesis Significance Testing in Hypothetico-Deductive IS Research. Journal of the Association for Information Systems, 21 (4), 1072–1102. https://doi.org/10.17705/1jais.00629

Paré, G., Trudel, M.-C., Jaana, M., & Kitsiou, S. (2015). Synthesizing Information Systems Knowledge: A Typology of Literature Reviews. Information & Management, 52 (2), 183–199.

Peirce, C. S. (1958). On the Logic of Drawing History from Ancient Documents Especially from Testimonies. In A. W. Burks (Ed.), Collected Papers of Charles Sanders Peirce, Volumes VII and VIII: Science and Philosophy and Reviews, Correspondence and Bibliography (pp. 162–255). Harvard University Press.

Pentland, B. T., Liu, P., Kremser, W., & Hærem, T. (2020). The Dynamics of Drift in Digitized Processes. MIS Quarterly, 44 (1), 19–47.

Recker, J., Indulska, M., Rosemann, M., & Green, P. (2010). The Ontological Deficiencies of Process Modeling in Practice. European Journal of Information Systems, 19 (5), 501–525.

Recker, J., Rosemann, M., Green, P., & Indulska, M. (2011). Do Ontological Deficiencies in Modeling Grammars Matter? MIS Quarterly, 35 (1), 57–79.

Recker, J., Rosemann, M., Indulska, M., & Green, P. (2009). Business Process Modeling: A Comparative Analysis. Journal of the Association for Information Systems, 10 (4), 333–363.

Strange, J. R., & Strange, S. M. (1972). How to Read a Scientific Research Report. In J. R. Strange & S. M. Strange (Eds.), Reading for Meaning in College and After (pp. 54–66). Brooks/Cole Publishing.

Templier, M., & Paré, G. (2015). A Framework for Guiding and Evaluating Literature Reviews. Communications of the Association for Information Systems, 37 (6), 112–137.

Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the Qualitative-Quantitative Divide: Guidelines for Conducting Mixed Methods Research in Information Systems. MIS Quarterly, 37 (1), 21–54.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27 (3), 425–478.

Weber, R. (2003). Editor’s Comments: The Problem of the Problem. MIS Quarterly, 27 (1), iii–ix.

Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Quarterly, 26 (2), xiii–xxiii.

Wolcott, H. F. (2001). Writing up Qualitative Research (2nd ed.). Sage.

Download references

Author information

Authors and affiliations.

University of Hamburg, Hamburg, Germany

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Recker, J. (2021). Planning Your Research. In: Scientific Research in Information Systems. Progress in IS. Springer, Cham. https://doi.org/10.1007/978-3-030-85436-2_3

Download citation

DOI : https://doi.org/10.1007/978-3-030-85436-2_3

Published : 22 October 2021

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-85435-5

Online ISBN : 978-3-030-85436-2

eBook Packages : Business and Management Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Research paper

How to Write a Research Paper | A Beginner's Guide

A research paper is a piece of academic writing that provides analysis, interpretation, and argument based on in-depth independent research.

Research papers are similar to academic essays , but they are usually longer and more detailed assignments, designed to assess not only your writing skills but also your skills in scholarly research. Writing a research paper requires you to demonstrate a strong knowledge of your topic, engage with a variety of sources, and make an original contribution to the debate.

This step-by-step guide takes you through the entire writing process, from understanding your assignment to proofreading your final draft.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Understand the assignment, choose a research paper topic, conduct preliminary research, develop a thesis statement, create a research paper outline, write a first draft of the research paper, write the introduction, write a compelling body of text, write the conclusion, the second draft, the revision process, research paper checklist, free lecture slides.

Completing a research paper successfully means accomplishing the specific tasks set out for you. Before you start, make sure you thoroughly understanding the assignment task sheet:

  • Read it carefully, looking for anything confusing you might need to clarify with your professor.
  • Identify the assignment goal, deadline, length specifications, formatting, and submission method.
  • Make a bulleted list of the key points, then go back and cross completed items off as you’re writing.

Carefully consider your timeframe and word limit: be realistic, and plan enough time to research, write, and edit.

Prevent plagiarism. Run a free check.

There are many ways to generate an idea for a research paper, from brainstorming with pen and paper to talking it through with a fellow student or professor.

You can try free writing, which involves taking a broad topic and writing continuously for two or three minutes to identify absolutely anything relevant that could be interesting.

You can also gain inspiration from other research. The discussion or recommendations sections of research papers often include ideas for other specific topics that require further examination.

Once you have a broad subject area, narrow it down to choose a topic that interests you, m eets the criteria of your assignment, and i s possible to research. Aim for ideas that are both original and specific:

  • A paper following the chronology of World War II would not be original or specific enough.
  • A paper on the experience of Danish citizens living close to the German border during World War II would be specific and could be original enough.

Note any discussions that seem important to the topic, and try to find an issue that you can focus your paper around. Use a variety of sources , including journals, books, and reliable websites, to ensure you do not miss anything glaring.

Do not only verify the ideas you have in mind, but look for sources that contradict your point of view.

  • Is there anything people seem to overlook in the sources you research?
  • Are there any heated debates you can address?
  • Do you have a unique take on your topic?
  • Have there been some recent developments that build on the extant research?

In this stage, you might find it helpful to formulate some research questions to help guide you. To write research questions, try to finish the following sentence: “I want to know how/what/why…”

A thesis statement is a statement of your central argument — it establishes the purpose and position of your paper. If you started with a research question, the thesis statement should answer it. It should also show what evidence and reasoning you’ll use to support that answer.

The thesis statement should be concise, contentious, and coherent. That means it should briefly summarize your argument in a sentence or two, make a claim that requires further evidence or analysis, and make a coherent point that relates to every part of the paper.

You will probably revise and refine the thesis statement as you do more research, but it can serve as a guide throughout the writing process. Every paragraph should aim to support and develop this central claim.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

planning process research paper

A research paper outline is essentially a list of the key topics, arguments, and evidence you want to include, divided into sections with headings so that you know roughly what the paper will look like before you start writing.

A structure outline can help make the writing process much more efficient, so it’s worth dedicating some time to create one.

Your first draft won’t be perfect — you can polish later on. Your priorities at this stage are as follows:

  • Maintaining forward momentum — write now, perfect later.
  • Paying attention to clear organization and logical ordering of paragraphs and sentences, which will help when you come to the second draft.
  • Expressing your ideas as clearly as possible, so you know what you were trying to say when you come back to the text.

You do not need to start by writing the introduction. Begin where it feels most natural for you — some prefer to finish the most difficult sections first, while others choose to start with the easiest part. If you created an outline, use it as a map while you work.

Do not delete large sections of text. If you begin to dislike something you have written or find it doesn’t quite fit, move it to a different document, but don’t lose it completely — you never know if it might come in useful later.

Paragraph structure

Paragraphs are the basic building blocks of research papers. Each one should focus on a single claim or idea that helps to establish the overall argument or purpose of the paper.

Example paragraph

George Orwell’s 1946 essay “Politics and the English Language” has had an enduring impact on thought about the relationship between politics and language. This impact is particularly obvious in light of the various critical review articles that have recently referenced the essay. For example, consider Mark Falcoff’s 2009 article in The National Review Online, “The Perversion of Language; or, Orwell Revisited,” in which he analyzes several common words (“activist,” “civil-rights leader,” “diversity,” and more). Falcoff’s close analysis of the ambiguity built into political language intentionally mirrors Orwell’s own point-by-point analysis of the political language of his day. Even 63 years after its publication, Orwell’s essay is emulated by contemporary thinkers.

Citing sources

It’s also important to keep track of citations at this stage to avoid accidental plagiarism . Each time you use a source, make sure to take note of where the information came from.

You can use our free citation generators to automatically create citations and save your reference list as you go.

APA Citation Generator MLA Citation Generator

The research paper introduction should address three questions: What, why, and how? After finishing the introduction, the reader should know what the paper is about, why it is worth reading, and how you’ll build your arguments.

What? Be specific about the topic of the paper, introduce the background, and define key terms or concepts.

Why? This is the most important, but also the most difficult, part of the introduction. Try to provide brief answers to the following questions: What new material or insight are you offering? What important issues does your essay help define or answer?

How? To let the reader know what to expect from the rest of the paper, the introduction should include a “map” of what will be discussed, briefly presenting the key elements of the paper in chronological order.

The major struggle faced by most writers is how to organize the information presented in the paper, which is one reason an outline is so useful. However, remember that the outline is only a guide and, when writing, you can be flexible with the order in which the information and arguments are presented.

One way to stay on track is to use your thesis statement and topic sentences . Check:

  • topic sentences against the thesis statement;
  • topic sentences against each other, for similarities and logical ordering;
  • and each sentence against the topic sentence of that paragraph.

Be aware of paragraphs that seem to cover the same things. If two paragraphs discuss something similar, they must approach that topic in different ways. Aim to create smooth transitions between sentences, paragraphs, and sections.

The research paper conclusion is designed to help your reader out of the paper’s argument, giving them a sense of finality.

Trace the course of the paper, emphasizing how it all comes together to prove your thesis statement. Give the paper a sense of finality by making sure the reader understands how you’ve settled the issues raised in the introduction.

You might also discuss the more general consequences of the argument, outline what the paper offers to future students of the topic, and suggest any questions the paper’s argument raises but cannot or does not try to answer.

You should not :

  • Offer new arguments or essential information
  • Take up any more space than necessary
  • Begin with stock phrases that signal you are ending the paper (e.g. “In conclusion”)

There are four main considerations when it comes to the second draft.

  • Check how your vision of the paper lines up with the first draft and, more importantly, that your paper still answers the assignment.
  • Identify any assumptions that might require (more substantial) justification, keeping your reader’s perspective foremost in mind. Remove these points if you cannot substantiate them further.
  • Be open to rearranging your ideas. Check whether any sections feel out of place and whether your ideas could be better organized.
  • If you find that old ideas do not fit as well as you anticipated, you should cut them out or condense them. You might also find that new and well-suited ideas occurred to you during the writing of the first draft — now is the time to make them part of the paper.

The goal during the revision and proofreading process is to ensure you have completed all the necessary tasks and that the paper is as well-articulated as possible. You can speed up the proofreading process by using the AI proofreader .

Global concerns

  • Confirm that your paper completes every task specified in your assignment sheet.
  • Check for logical organization and flow of paragraphs.
  • Check paragraphs against the introduction and thesis statement.

Fine-grained details

Check the content of each paragraph, making sure that:

  • each sentence helps support the topic sentence.
  • no unnecessary or irrelevant information is present.
  • all technical terms your audience might not know are identified.

Next, think about sentence structure , grammatical errors, and formatting . Check that you have correctly used transition words and phrases to show the connections between your ideas. Look for typos, cut unnecessary words, and check for consistency in aspects such as heading formatting and spellings .

Finally, you need to make sure your paper is correctly formatted according to the rules of the citation style you are using. For example, you might need to include an MLA heading  or create an APA title page .

Scribbr’s professional editors can help with the revision process with our award-winning proofreading services.

Discover our paper editing service

Checklist: Research paper

I have followed all instructions in the assignment sheet.

My introduction presents my topic in an engaging way and provides necessary background information.

My introduction presents a clear, focused research problem and/or thesis statement .

My paper is logically organized using paragraphs and (if relevant) section headings .

Each paragraph is clearly focused on one central idea, expressed in a clear topic sentence .

Each paragraph is relevant to my research problem or thesis statement.

I have used appropriate transitions  to clarify the connections between sections, paragraphs, and sentences.

My conclusion provides a concise answer to the research question or emphasizes how the thesis has been supported.

My conclusion shows how my research has contributed to knowledge or understanding of my topic.

My conclusion does not present any new points or information essential to my argument.

I have provided an in-text citation every time I refer to ideas or information from a source.

I have included a reference list at the end of my paper, consistently formatted according to a specific citation style .

I have thoroughly revised my paper and addressed any feedback from my professor or supervisor.

I have followed all formatting guidelines (page numbers, headers, spacing, etc.).

You've written a great paper. Make sure it's perfect with the help of a Scribbr editor!

Open Google Slides Download PowerPoint

Is this article helpful?

Other students also liked.

  • Writing a Research Paper Introduction | Step-by-Step Guide
  • Writing a Research Paper Conclusion | Step-by-Step Guide
  • Research Paper Format | APA, MLA, & Chicago Templates

More interesting articles

  • Academic Paragraph Structure | Step-by-Step Guide & Examples
  • Checklist: Writing a Great Research Paper
  • How to Create a Structured Research Paper Outline | Example
  • How to Write a Discussion Section | Tips & Examples
  • How to Write Recommendations in Research | Examples & Tips
  • How to Write Topic Sentences | 4 Steps, Examples & Purpose
  • Research Paper Appendix | Example & Templates
  • Research Paper Damage Control | Managing a Broken Argument
  • What Is a Theoretical Framework? | Guide to Organizing

What is your plagiarism score?

  • U.S. Locations
  • UMGC Europe
  • Learn Online
  • Find Answers
  • 855-655-8682
  • Current Students

Online Guide to Writing and Research

The research process, explore more of umgc.

  • Online Guide to Writing

Planning and Writing a Research Paper

Work Your Sources into Your Research Writing

Working your sources into your writing is a very important part of the writing process and gets easier over time.  You must also decide whether you will quote , paraphrase , or summarize the material when incorporating resources into your writing. 

Academic integrity encompasses the practice of engaging with source material meaningfully and ethically, to the benefit of your own learning and the discourse community with which you interact.  UMGC has carefully developed a philosophy of, approach to, and tutorial about academic integrity that can be found here: Philosophy of Academic Integrity   Please review this material and familiarize yourself with both the best practices in this area and how to avoid running afoul of expectations.

Quoting, Paraphrasing, Summarizing, and Citing Your Sources

How to incorporate your sources.

How you incorporate your sources into your writing depends on how you are using them and why you are writing your paper. Many students have difficulty deciding when to quote, paraphrase, or summarize, and then when to cite a source. 

Understanding Why We Use Citations

Understanding why writers use citations in academic research can help you decide when to use them.  Citing reliable sources gives your research and writing credibility, showing your familiarity with the work of a scholarly community and your understanding of how you are contributing to it.  It also shows the reader that you have done the research and have gone to great lengths to make your paper as strong and clear as possible.  

How to Work Citations and Paraphrasing Into Your Own Writing

Keep in mind that sometimes it is difficult to figure out how to work the quotations and paraphrases into your own style of writing. You want to avoid using lengthy blocks of quotations or lengthy paraphrases of the sources. For more information about quoting and paraphrasing resources, check out Chapter 5, “ Academic Integrity and Documentation .”  Also, please take a look at the UMGC library Citing and Writing LibGuide .

Research Styles

  • OBJECTIVE RESEARCHER
  • CONTEXT CREATOR

At this level, you are expected to remain objective and impartial when presenting the research, with no personal opinions given. You report the information, taking on the role of an experimental researcher or even an investigative reporter. 

Here, you are expected to put your sources in the context of a greater issue or debate. You have to offer enough explanation and discussion (through your own comprehension and interpretation) to help your reader see the connection between the material you are researching and the other references. 

At this level, you help the reader understand the relationship, significance, and authority of the reference material by introducing and discussing its sources.

Here, you are asked to judge the source materials and their usefulness for your research project. This last position, most commonly found in literary, musical, or other fine arts criticism, involves you, the researcher, as a critical thinker in assessing the sources. 

Key Takeaways

  • Acknowledging intellectual ownership shows respect for those who have contributed to the field of knowledge and for the achievements in that field.
  • Citing reliable sources gives your research and writing credibility, showing your familiarity with the work of a scholarly community and your understanding of how you are contributing to it.

Mailing Address: 3501 University Blvd. East, Adelphi, MD 20783 This work is licensed under a  Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License . © 2022 UMGC. All links to external sites were verified at the time of publication. UMGC is not responsible for the validity or integrity of information located at external sites.

Table of Contents: Online Guide to Writing

Chapter 1: College Writing

How Does College Writing Differ from Workplace Writing?

What Is College Writing?

Why So Much Emphasis on Writing?

Chapter 2: The Writing Process

Doing Exploratory Research

Getting from Notes to Your Draft

Introduction

Prewriting - Techniques to Get Started - Mining Your Intuition

Prewriting: Targeting Your Audience

Prewriting: Techniques to Get Started

Prewriting: Understanding Your Assignment

Rewriting: Being Your Own Critic

Rewriting: Creating a Revision Strategy

Rewriting: Getting Feedback

Rewriting: The Final Draft

Techniques to Get Started - Outlining

Techniques to Get Started - Using Systematic Techniques

Thesis Statement and Controlling Idea

Writing: Getting from Notes to Your Draft - Freewriting

Writing: Getting from Notes to Your Draft - Summarizing Your Ideas

Writing: Outlining What You Will Write

Chapter 3: Thinking Strategies

A Word About Style, Voice, and Tone

A Word About Style, Voice, and Tone: Style Through Vocabulary and Diction

Critical Strategies and Writing

Critical Strategies and Writing: Analysis

Critical Strategies and Writing: Evaluation

Critical Strategies and Writing: Persuasion

Critical Strategies and Writing: Synthesis

Developing a Paper Using Strategies

Kinds of Assignments You Will Write

Patterns for Presenting Information

Patterns for Presenting Information: Critiques

Patterns for Presenting Information: Discussing Raw Data

Patterns for Presenting Information: General-to-Specific Pattern

Patterns for Presenting Information: Problem-Cause-Solution Pattern

Patterns for Presenting Information: Specific-to-General Pattern

Patterns for Presenting Information: Summaries and Abstracts

Supporting with Research and Examples

Writing Essay Examinations

Writing Essay Examinations: Make Your Answer Relevant and Complete

Writing Essay Examinations: Organize Thinking Before Writing

Writing Essay Examinations: Read and Understand the Question

Chapter 4: The Research Process

Planning and Writing a Research Paper: Ask a Research Question

Planning and Writing a Research Paper: Cite Sources

Planning and Writing a Research Paper: Collect Evidence

Planning and Writing a Research Paper: Decide Your Point of View, or Role, for Your Research

Planning and Writing a Research Paper: Draw Conclusions

Planning and Writing a Research Paper: Find a Topic and Get an Overview

Planning and Writing a Research Paper: Manage Your Resources

Planning and Writing a Research Paper: Outline

Planning and Writing a Research Paper: Survey the Literature

Planning and Writing a Research Paper: Work Your Sources into Your Research Writing

Research Resources: Where Are Research Resources Found? - Human Resources

Research Resources: What Are Research Resources?

Research Resources: Where Are Research Resources Found?

Research Resources: Where Are Research Resources Found? - Electronic Resources

Research Resources: Where Are Research Resources Found? - Print Resources

Structuring the Research Paper: Formal Research Structure

Structuring the Research Paper: Informal Research Structure

The Nature of Research

The Research Assignment: How Should Research Sources Be Evaluated?

The Research Assignment: When Is Research Needed?

The Research Assignment: Why Perform Research?

Chapter 5: Academic Integrity

Academic Integrity

Giving Credit to Sources

Giving Credit to Sources: Copyright Laws

Giving Credit to Sources: Documentation

Giving Credit to Sources: Style Guides

Integrating Sources

Practicing Academic Integrity

Practicing Academic Integrity: Keeping Accurate Records

Practicing Academic Integrity: Managing Source Material

Practicing Academic Integrity: Managing Source Material - Paraphrasing Your Source

Practicing Academic Integrity: Managing Source Material - Quoting Your Source

Practicing Academic Integrity: Managing Source Material - Summarizing Your Sources

Types of Documentation

Types of Documentation: Bibliographies and Source Lists

Types of Documentation: Citing World Wide Web Sources

Types of Documentation: In-Text or Parenthetical Citations

Types of Documentation: In-Text or Parenthetical Citations - APA Style

Types of Documentation: In-Text or Parenthetical Citations - CSE/CBE Style

Types of Documentation: In-Text or Parenthetical Citations - Chicago Style

Types of Documentation: In-Text or Parenthetical Citations - MLA Style

Types of Documentation: Note Citations

Chapter 6: Using Library Resources

Finding Library Resources

Chapter 7: Assessing Your Writing

How Is Writing Graded?

How Is Writing Graded?: A General Assessment Tool

The Draft Stage

The Draft Stage: The First Draft

The Draft Stage: The Revision Process and the Final Draft

The Draft Stage: Using Feedback

The Research Stage

Using Assessment to Improve Your Writing

Chapter 8: Other Frequently Assigned Papers

Reviews and Reaction Papers: Article and Book Reviews

Reviews and Reaction Papers: Reaction Papers

Writing Arguments

Writing Arguments: Adapting the Argument Structure

Writing Arguments: Purposes of Argument

Writing Arguments: References to Consult for Writing Arguments

Writing Arguments: Steps to Writing an Argument - Anticipate Active Opposition

Writing Arguments: Steps to Writing an Argument - Determine Your Organization

Writing Arguments: Steps to Writing an Argument - Develop Your Argument

Writing Arguments: Steps to Writing an Argument - Introduce Your Argument

Writing Arguments: Steps to Writing an Argument - State Your Thesis or Proposition

Writing Arguments: Steps to Writing an Argument - Write Your Conclusion

Writing Arguments: Types of Argument

Appendix A: Books to Help Improve Your Writing

Dictionaries

General Style Manuals

Researching on the Internet

Special Style Manuals

Writing Handbooks

Appendix B: Collaborative Writing and Peer Reviewing

Collaborative Writing: Assignments to Accompany the Group Project

Collaborative Writing: Informal Progress Report

Collaborative Writing: Issues to Resolve

Collaborative Writing: Methodology

Collaborative Writing: Peer Evaluation

Collaborative Writing: Tasks of Collaborative Writing Group Members

Collaborative Writing: Writing Plan

General Introduction

Peer Reviewing

Appendix C: Developing an Improvement Plan

Working with Your Instructor’s Comments and Grades

Appendix D: Writing Plan and Project Schedule

Devising a Writing Project Plan and Schedule

Reviewing Your Plan with Others

By using our website you agree to our use of cookies. Learn more about how we use cookies by reading our  Privacy Policy .

IMAGES

  1. Research Process: 8 Steps in Research Process

    planning process research paper

  2. Research Planning Template

    planning process research paper

  3. Best Steps to Write a Research Paper in College/University

    planning process research paper

  4. 8 Effective Steps for Planning your Research Process

    planning process research paper

  5. 10 Quick Steps to Planning a Research Paper » The Cafe Scholar

    planning process research paper

  6. The research process guide

    planning process research paper

VIDEO

  1. Types of Research Design

  2. Planning your Research

  3. How to Do Research and Get Published

  4. Conference or Journal, Where should you submit Research Paper? #phdlife

  5. Planning research: A Worked Example

  6. Structure of research proposal

COMMENTS

  1. Research Methods and the Planning Process

    Chapter 1 introduces the definition of research methods, and how they relate to the urban and regional planning process. Although there are different approaches to resolving planning issues or making a plan, the basic process of planning goes from problem definition, data collection, data analysis, to reporting findings and using the findings ...

  2. The importance of the planning phase to project success

    Project Success. Before it is possible, discuss the impact of the project planning phase on success; it is useful to define what a successful project is. Shenhar, Dvir, Levy, and Maltz (2001) define four levels of project success: 1. Project efficiency. 2. Impact on the customer. 3. Business success.

  3. Planning Qualitative Research: Design and Decision Making for New

    While many books and articles guide various qualitative research methods and analyses, there is currently no concise resource that explains and differentiates among the most common qualitative approaches. We believe novice qualitative researchers, students planning the design of a qualitative study or taking an introductory qualitative research course, and faculty teaching such courses can ...

  4. Does Strategic Planning Improve Organizational Performance? A Meta

    Strategic planning (SP) is one of the more popular management approaches in contemporary organizations, and it is consistently ranked among the five most popular managerial approaches worldwide (Rigby and Bilodeau 2013; Wolf and Floyd 2017).Typically operationalized as an approach to strategy formulation, SP includes elements such as analysis of the organization's mandate, mission, and values ...

  5. The Impact of Planning on Project Success-A Literature Review

    This research aims to determine the CSFs for large urban construction projects in Djibouti, with a focus on project planning and scheduling, risk management, communication and stakeholder ...

  6. The critical steps for successful research: The research proposal and

    Scientific publication is an organic process of planning, researching, drafting, revising, and updating the current knowledge for future perspectives. Writing a research paper is no easier than the research itself. The lectures of Day 2 of the workshop dealt with the basic elements and logistics of writing a scientific paper.

  7. Planning and Conducting Clinical Research: The Whole Process

    Systematic literature reviews of published papers will inform authors of the existing clinical evidence on a research topic. ... Theoretical design is the next important step in the research process after a literature review and conceptual framework identification. While the theoretical design is a crucial step in research planning, it is often ...

  8. Critical planning processes in construction projects

    identified the following six planning processes as the ones that highly contribute to. project success: "definition of activities to be performed in the project", "schedule. development ...

  9. A Beginner's Guide to Starting the Research Process

    Step 4: Create a research design. The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you'll use to collect and analyze it, and the location and timescale of your research.

  10. Strategic Planning Research: Toward a Theory-Driven Agenda

    Abstract. This review incorporates strategic planning research conducted over more than 30 years and ranges from the classical model of strategic planning to recent empirical work on intermediate outcomes, such as the reduction of managers' position bias and the coordination of subunit activity. Prior reviews have not had the benefit of more ...

  11. How to write a research plan: Step-by-step guide

    Here's an example outline of a research plan you might put together: Project title. Project members involved in the research plan. Purpose of the project (provide a summary of the research plan's intent) Objective 1 (provide a short description for each objective) Objective 2. Objective 3.

  12. Full article: What Is Planning?

    Recent JAPA articles have drawn from psychology and anthropology. Examining professional planning as an occupation and institution, such as ethical, equity, or historical dimensions. Some work on planning education, as it relates to practice, could fit in this category. Reviewing how planning research is conducted.

  13. How to Write a Research Proposal

    Research proposal examples. Writing a research proposal can be quite challenging, but a good starting point could be to look at some examples. We've included a few for you below. Example research proposal #1: "A Conceptual Framework for Scheduling Constraint Management".

  14. A review of methods, techniques and tools for project planning and

    Search calls for papers Journal Suggester Open access publishing ... process, and generate more integrated project plan. More importantly, our review highlights an important shift in the project planning and control research field, which has been largely dominated by the project scheduling literature in the past, as short term and reactive ...

  15. Planning Your Research

    A research design is a blueprint for the collection, measurement, and analysis of the data used to answer the stated research question. It should be economical and reflect complex research planning decisions that require compromises and trade-offs among the demands of resources, time, quality, and data access.

  16. Methods of Project Planning for Construction Projects

    This research paper aims to present a dynamic model in the project planning process that is characterized by simplicity and effectiveness, taking into account the internal and external conditions ...

  17. How to Write a Research Paper

    Develop a thesis statement. Create a research paper outline. Write a first draft of the research paper. Write the introduction. Write a compelling body of text. Write the conclusion. The second draft. The revision process. Research paper checklist.

  18. Getting strategic about strategic planning research

    First, we discuss what makes public-sector strategic planning strategic. Our goal in this section is to reduce confusion in the literature about what strategic planning is and is not. Next, we introduce in more detail the articles in the special issue. Third, we provide a broad assessment of the current state of strategic planning research in ...

  19. PDF Research Paper Writing Process

    h paper are related processes. When you read a research paper, you internalize the. structure of a research paper. Note-taking allows you to zoom in on the most relevant parts of the r. search papers you are reading. Putting your notes into an outline helps you create a plan f. r how you're going to write. If you don't have a reading ...

  20. Urban planning and quality of life: A review of pathways linking the

    The objectives of the paper are: (1) to present a conceptual model that organizes the pathways linking the built environment to SWB, (2) to provide an overview of the empirical evidence on these pathways, and (3) based on the knowledge from the overview, to present potential strategies on how to improve SWB through urban planning. The outcomes ...

  21. How to plan a research project

    Research planning is rarely a linear process. It's also common for new and unexpected avenues to suggest themselves. As the sociologist Thorstein Veblen wrote in 1908 : 'The outcome of any serious research can only be to make two questions grow where only one grew before.' That's as true of research planning as it is of a completed project.

  22. Planning and Writing a Research Paper: Work Your Sources into Your

    Work Your Sources into Your Research Writing. Working your sources into your writing is a very important part of the writing process and gets easier over time. You must also decide whether you will quote, paraphrase, or summarize the material when incorporating resources into your writing. Academic integrity encompasses the practice of engaging ...

  23. PLANNING AS A MANAGEMENT FUNCTION IN BUSINESS ORGANISATIONS

    Planning is the continuous managerial process of anticipating and forecasting the future environment of the business organization, formulating the long-term and short-term goals to be achieved ...