- Meet Our Team
- Discover The LSA Difference
- Coaching Process
- Core Values
- What is Executive Functioning?
- Understanding the EF Ripple Effect
- High School Students
- College Students
- Young Adults
- Executive Functioning Assessment
- Executive Functioning Meal Plan
- Executive Functioning 101 Resource Hub
- Executive Functioning IEP Goal Resource Hub
- How To Make Stuff More EF Friendly
- ND-Friendly Tools
Teaching the IDEAL Problem-Solving Method to Diverse Learners
Written by:
Amy Sippl
Filed under: EF 101 Series , Executive Functioning , Problem Solving
Published: January 21, 2021
Last Reviewed: August 27, 2024
READING TIME: ~ minutes
We may assume that teens and young adults come equipped with a strong sense of approaching difficult or uncertain situations. For many of the individuals we work with, problem-solving needs to be practiced and developed in the same way as academic and social skills. The IDEAL Problem Solving Method is one option to teach problem-solving to diverse learners.
What is problem-solving?
Problem-solving is the capacity to identify and describe a problem and generate solutions to fix it .
Problem-solving involves other executive functioning behaviors as well, including attentional control, planning , and task initiation . Individuals might use time management , emotional control, or organization skills to solve problems as well. Over time, learners can observe their behavior, use working memory , and self-monitor behaviors to influence how we solve future issues.
Why are problem-solving strategies important?
Not all diverse learners develop adequate problem-solving. Learners with a history of behavioral and learning challenges may not always use good problem-solving skills to manage stressful situations. Some students use challenging behaviors like talking back, arguing, property destruction, and aggression when presented with challenging tasks. Others might shut down, check out, or struggle to follow directions when encountering new or unknown situations.
Without a step-by-step model for problem-solving , including identifying a problem and choosing a replacement behavior to solve it, many of our children and students use challenging behaviors instead. The IDEAL Problem-Solving Method is one option to teach diverse learners to better approach difficult situations.
IDEAL Problem-Solving Method
In 1984, Bransford and Stein published one of the most popular and well-regarded problem-solving methods. It’s used both in industry and in education to help various learners establish a problem, generate solutions, and move forward quickly and efficiently. By teaching your learner each step of the IDEAL model, you can provide them with a set of steps to approach a problem with confidence.
The IDEAL Problem-Solving Method includes:
I – Identify the problem.
There’s no real way to create a solution to a problem unless you first know the scope of the problem. Encourage your learner to identify the issue in their own words. Outline the facts and the unknowns. Foster an environment where your learner is praised and supported for identifying and taking on new problems.
Examples of identifying problems:
- “I have a math quiz next week and don’t know how to do the problems.”
- “I can’t access my distance learning course website.”
- “The trash needs to be taken out, and I can’t find any trash bags.”
D – Define an outcome
The second step in the IDEAL problem-solving process is to define an outcome or goal for problem-solving. Multiple people can agree that a problem exists but have very different ideas on goals or outcomes. By deciding on an outlined objective first, it can speed up the process of identifying solutions.
Defining outcomes and goals may be a difficult step for some diverse learners. The results don’t need to be complicated, but just clear for everyone involved.
Examples of defining outcomes:
- “I want to do well on my math quiz.”
- “I get access to the course website.”
- “The trash gets taken out before the trash pickup day tomorrow.”
E – Explore possible strategies.
Once you have an outcome, encourage your learner to brainstorm possible strategies. All possible solutions should be on the table during this stage, so encourage learners to make lists, use sticky notes, or voice memos to record any ideas. If your learner struggles with creative idea generation, help them develop a plan of resources for who they might consult in the exploration stage.
Examples of possible strategies to solve a problem:
- “I review the textbook; I ask for math help from a friend; I look up the problems online; I email my teacher.”
- “I email my teacher for the course access; I ask for help from a classmate; I try to reset my password.”
- “I use something else for a trash bag; I place an online order for bags; I take the trash out without a bag; I ask a neighbor for a bag; I go shopping for trash bags.”
A – Anticipate Outcomes & Act
Once we generate a list of strategies, the next step in the IDEAL problem-solving model recommends that you review the potential steps and decide which one is the best option to use first. Helping learners to evaluate the pros and cons of action steps can take practice. Ask questions like, “What might happen if you take this step?” or “Does that step make you feel good about moving forward or uncertain?”
After evaluating the outcomes, the next step is to take action. Encourage your learner to move forward even if they may not know the full result of taking action. Support doing something, even if it might not be the same strategy, you might take to solve a problem or the ‘best’ solution.
L – Look and Learn
The final step in the IDEAL problem-solving model is to look and learn from an attempt to solve a problem. Many parents and teachers forget this critical step in helping diverse learners to stop and reflect when problem-solving goes well and doesn’t go well. Helping our students and children learn from experience can make problem-solving more efficient and effective in the future. Ask questions like “How did that go?” and “What do you think you’ll do differently next time?”
Examples of Look and Learn statements:
- “I didn’t learn the problems from looking at the textbook, but it did help to call a friend. I’ll start there next time.”
- “When I didn’t have access to the course website, resetting my password worked.”
- “I ran out of trash bags because I forgot to put them on the shopping list . I’ll buy an extra box of trash bags to have them on hand, so I don’t run out next time.”
Practice Problem-Solving
For ideas on common problems, download our deck of problem-solving practice cards. Set aside time to practice, role-play, give feedback, and rehearse again if needed.
How to teach the IDEAL problem-solving method
Top businesses and corporations spend thousands of dollars on training teams to implement problem-solving strategies like the IDEAL method. Employees practice and role-play common problems in the workplace . Coaches give supportive feedback until everyone feels confident in each of the steps.
Teachers and parents can use the same process to help students and children use the IDEAL problem-solving method. Set aside time to review common problems or social scenarios your learner might encounter. Practice using the IDEAL method when emotions and tensions aren’t running as high. Allow your learner to ask questions, work through problems, and receive feedback and praise for creating logical action plans.
Further Reading
- Bransford, J., and Stein, B., “The Ideal Problem Solver” (1993). Centers for Teaching and Technology – Book Library . 46. https://digitalcommons.georgiasouthern.edu/ct2-library/4
- Executive Functioning 101: Planning Skills
- Executive Functioning: Task Initiation
- Executive Functioning Skills by Age: What to Expect
- Kern, L., George, M. P., & Weist, M. D. (2016). Supporting students with emotional and behavioral problems. Baltimore, MD: Paul H. Brookes.
About The Author
Amy Sippl is a Minnesota-based Board Certified Behavior Analyst (BCBA) and freelance content developer specializing in helping individuals with autism and their families reach their best possible outcomes. Amy earned her Master's Degree in Applied Behavior Analysis from St. Cloud State University and also holds undergraduate degrees in Psychology and Family Social Science from University of Minnesota – Twin Cities. Amy has worked with children with autism and related developmental disabilities for over a decade in both in-home and clinical settings. Her content focuses on parents, educators, and professionals in the world of autism—emphasizing simple strategies and tips to maximize success. To see more of her work visit amysippl.com .
What year did you write this blog? Thanks!
Related Posts
10-minute tips to improve self-monitoring skills, how to make vacation planning executive function friendly, 16 tips to customize a to-do list for any learner, executive functioning skills 101: problem-solving, inbox zero vs. inbox functional: mastering email management, 10-minute tips to practice organization.
Life Skills Advocate is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com. Some of the links in this post may be Amazon.com affiliate links, which means if you make a purchase, Life Skills Advocate will earn a commission. However, we only promote products we actually use or those which have been vetted by the greater community of families and professionals who support individuals with diverse learning needs.
Session expired
Please log in again. The login page will open in a new tab. After logging in you can close it and return to this page.
All Subjects
study guides for every class
That actually explain what's on your next test, ideal problem-solving model, from class:.
The ideal problem-solving model is a structured approach that provides a systematic way to address complex issues by identifying the problem, generating potential solutions, evaluating those solutions, and implementing the most effective one. This model emphasizes critical thinking and analytical skills, helping leaders to navigate challenges and make informed decisions.
congrats on reading the definition of ideal problem-solving model . now let's actually learn it.
5 Must Know Facts For Your Next Test
- The ideal problem-solving model is often visualized as a step-by-step process that includes defining the problem, analyzing the situation, brainstorming solutions, choosing the best solution, and taking action.
- This model encourages collaboration among team members to leverage diverse perspectives and expertise, enhancing creativity in solution generation.
- Using this model helps leaders minimize bias in their decision-making by systematically evaluating options based on evidence and logic.
- Implementing the ideal problem-solving model can improve team dynamics by fostering open communication and encouraging a culture of constructive feedback.
- Evaluating outcomes after implementation is crucial; it allows leaders to learn from both successes and failures, refining their approach for future problem-solving efforts.
Review Questions
- The ideal problem-solving model enhances critical thinking by providing a clear framework for leaders to systematically analyze problems and assess potential solutions. It encourages leaders to gather relevant data, consider various viewpoints, and evaluate the implications of each option before making a decision. This structured approach not only aids in making more informed choices but also helps leaders recognize biases and assumptions that may affect their judgment.
- Collaborative efforts can significantly improve the effectiveness of the ideal problem-solving model by bringing together diverse perspectives and skill sets. When team members engage in brainstorming sessions, they can generate a wider range of creative solutions than an individual might come up with alone. Additionally, collaboration fosters a sense of shared ownership over decisions, which can enhance commitment to implementing chosen solutions and increase the likelihood of success.
- Consistently applying the ideal problem-solving model can have a profound impact on long-term organizational success by creating a culture of continuous improvement and learning. By systematically addressing challenges and evaluating outcomes, organizations can refine their processes and strategies over time. This proactive approach not only enhances decision-making capabilities but also builds resilience within teams, enabling them to adapt quickly to change and maintain competitiveness in an ever-evolving landscape.
Related terms
The ability to analyze information objectively and evaluate different perspectives to form reasoned judgments.
Decision-Making Process : A series of steps that individuals or groups follow to choose between options or courses of action.
Root Cause Analysis : A method used to identify the fundamental cause of a problem to prevent its recurrence.
" Ideal problem-solving model " also found in:
© 2024 fiveable inc. all rights reserved., ap® and sat® are trademarks registered by the college board, which is not affiliated with, and does not endorse this website..
- Bipolar Disorder
- Therapy Center
- When To See a Therapist
- Types of Therapy
- Best Online Therapy
- Best Couples Therapy
- Managing Stress
- Sleep and Dreaming
- Understanding Emotions
- Self-Improvement
- Healthy Relationships
- Student Resources
- Personality Types
- Guided Meditations
- Verywell Mind Insights
- 2024 Verywell Mind 25
- Mental Health in the Classroom
- Editorial Process
- Meet Our Review Board
- Crisis Support
Overview of the Problem-Solving Mental Process
Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.
- Identify the Problem
- Define the Problem
- Form a Strategy
- Organize Information
- Allocate Resources
- Monitor Progress
- Evaluate the Results
Frequently Asked Questions
Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.
The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.
It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.
In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.
The following steps include developing strategies and organizing knowledge.
1. Identifying the Problem
While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.
Some strategies that you might use to figure out the source of a problem include :
- Asking questions about the problem
- Breaking the problem down into smaller pieces
- Looking at the problem from different perspectives
- Conducting research to figure out what relationships exist between different variables
2. Defining the Problem
After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address
At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.
3. Forming a Strategy
After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.
The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.
- Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
- Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.
Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.
4. Organizing Information
Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.
When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.
5. Allocating Resources
Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.
If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.
At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.
6. Monitoring Progress
After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.
It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.
Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .
7. Evaluating the Results
After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.
Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.
A Word From Verywell
It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.
Get Advice From The Verywell Mind Podcast
Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.
Follow Now : Apple Podcasts / Spotify / Google Podcasts
You can become a better problem solving by:
- Practicing brainstorming and coming up with multiple potential solutions to problems
- Being open-minded and considering all possible options before making a decision
- Breaking down problems into smaller, more manageable pieces
- Asking for help when needed
- Researching different problem-solving techniques and trying out new ones
- Learning from mistakes and using them as opportunities to grow
It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.
Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.
If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.
Davidson JE, Sternberg RJ, editors. The Psychology of Problem Solving . Cambridge University Press; 2003. doi:10.1017/CBO9780511615771
Sarathy V. Real world problem-solving . Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261
By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
An official website of the United States government
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
- Publications
- Account settings
The PMC website is updating on October 15, 2024. Learn More or Try it out now .
- Advanced Search
- Journal List
- Elsevier - PMC COVID-19 Collection
Problem solving through values: A challenge for thinking and capability development
- • This paper introduces the 4W framework of consistent problem solving through values.
- • The 4W suggests when, how and why the explication of values helps to solve a problem.
- • The 4W is significant to teach students to cope with problems having crucial consequences.
- • The paper considers challenges using such framework of thinking in different fields of education.
The paper aims to introduce the conceptual framework of problem solving through values. The framework consists of problem analysis, selection of value(s) as a background for the solution, the search for alternative ways of the solution, and the rationale for the solution. This framework reveals when, how, and why is important to think about values when solving problems. A consistent process fosters cohesive and creative value-based thinking during problem solving rather than teaching specific values. Therefore, the framework discloses the possibility for enabling the development of value-grounded problem solving capability.The application of this framework highlights the importance of responsibility for the chosen values that are the basis for the alternatives which determine actions. The 4W framework is meaningful for the people’s lives and their professional work. It is particularly important in the process of future professionals’ education. Critical issues concerning the development of problem solving through values are discussed when considering and examining options for the implementation of the 4W framework in educational institutions.
1. Introduction
The core competencies necessary for future professionals include problem solving based on complexity and collaborative approaches ( OECD, 2018 ). Currently, the emphasis is put on the development of technical, technological skills as well as system thinking and other cognitive abilities (e.g., Barber, 2018 ; Blanco, Schirmbeck, & Costa, 2018 ). Hence, education prepares learners with high qualifications yet lacking in moral values ( Nadda, 2017 ). Educational researchers (e.g., Barnett, 2007 ; Harland & Pickering, 2010 ) stress that such skills and abilities ( the how? ), as well as knowledge ( the what? ), are insufficient to educate a person for society and the world. The philosophy of education underlines both the epistemological and ontological dimensions of learning. Barnett (2007) points out that the ontological dimension has to be above the epistemological one. The ontological dimension encompasses the issues related to values that education should foster ( Harland & Pickering, 2010 ). In addition, values are closely related to the enablement of learners in educational environments ( Jucevičienė et al., 2010 ). For these reasons, ‘ the why ?’ based on values is required in the learning process. The question arises as to what values and how it makes sense to educate them. Value-based education seeks to address these issues and concentrates on values transfer due to their integration into the curriculum. Yazdani and Akbarilakeh (2017) discussed that value-based education could only convey factual knowledge of values and ethics. However, such education does not guarantee the internalization of values. Nevertheless, value-based education indicates problem solving as one of the possibilities to develop values.
Values guide and affect personal behavior encompassing the ethical aspects of solutions ( Roccas, Sagiv, & Navon, 2017 ; Schwartz, 1992 , 2012 ; Verplanken & Holland, 2002 ). Therefore, they represent the essential foundation for solving a problem. Growing evidence indicates the creative potential of values ( Dollinger, Burke, & Gump, 2007 ; Kasof, Chen, Himsel, & Greenberger, 2007 ; Lebedeva et al., 2019) and emphasizes their significance for problem solving. Meanwhile, research in problem solving pays little attention to values. Most of the problem solving models (e.g., Newell & Simon, 1972 ; Jonassen, 1997 ) utilize a rational economic approach. Principally, the research on the mechanisms of problem solving have been conducted under laboratory conditions performing simple tasks ( Csapó & Funke, 2017 ). Moreover, some of the decision-making models share the same steps as problem solving (c.f., Donovan, Guss, & Naslund, 2015 ). This explains why these terms are sometimes used interchangeably ( Huitt, 1992 ). Indeed, decision-making is a part of problem solving, which emerges while choosing between alternatives. Yet, values, moral, and ethical issues are more common in decision-making research (e.g., Keeney, 1994 ; Verplanken & Holland, 2002 ; Hall & Davis, 2007 ; Sheehan & Schmidt, 2015 ). Though, research by Shepherd, Patzelt, and Baron (2013) , Baron, Zhao, and Miao (2015) has affirmed that contemporary business decision makers rather often leave aside ethical issues and moral values. Thus, ‘ethical disengagement fallacy’ ( Sternberg, 2017, p.7 ) occurs as people think that ethics is more relevant to others. In the face of such disengagement, ethical issues lose their prominence.
The analysis of the literature revealed a wide field of problem solving research presenting a range of more theoretical insights rather empirical evidence. Despite this, to date, a comprehensive model that reveals how to solve problems emphasizing thinking about values is lacking. This underlines the relevance of the chosen topic, i.e. a challenge for thinking and for the development of capabilities addressing problems through values. To address this gap, the following issues need to be investigated: When, how, and why a problem solver should take into account values during problem solving? What challenges may occur for using such framework of thinking in different fields of education? Aiming this, the authors of the paper substantiated the conceptual framework of problem solving grounded in consistent thinking about values. The substantiation consists of several parts. First, different approaches to solving problems were examined. Second, searching to reveal the possibilities of values integration into problem solving, value-based approaches significant for problem solving were critically analyzed. Third, drawing on the effect of values when solving a problem and their creative potential, the authors of this paper claim that the identification of values and their choice for a solution need to be specified in the process of problem solving. As a synthesis of conclusions coming from the literature review and conceptual extensions regarding values, the authors of the paper created the coherent framework of problem solving through values (so called 4W).
The novelty of the 4W framework is exposed by several contributions. First, the clear design of overall problem solving process with attention on integrated thinking about values is used. Unlike in most models of problem solving, the first stage encompass the identification of a problem, an analysis of a context and the perspectives that influence the whole process, i.e. ‘What?’. The stage ‘What is the basis for a solution?’ focus on values identification and their choice. The stage ‘Ways how?’ encourages to create alternatives considering values. The stage ‘Why?’ represent justification of a chosen alternative according particular issues. Above-mentioned stages including specific steps are not found in any other model of problem solving. Second, even two key stages nurture thinking about values. The specificity of the 4W framework allows expecting its successful practical application. It may help to solve a problem more informed revealing when and how the explication of values helps to reach the desired value-based solution. The particular significance is that the 4W framework can be used to develop capabilities to solve problems through values. The challenges to use the 4W framework in education are discussed.
2. Methodology
To create the 4W framework, the integrative literature review was chosen. According to Snyder (2019) , this review is ‘useful when the purpose of the review is not to cover all articles ever published on the topic but rather to combine perspectives to create new theoretical models’ (p.334). The scope of this review focused on research disclosing problem solving process that paid attention on values. The following databases were used for relevant information search: EBSCO/Hostdatabases (ERIC, Education Source), Emerald, Google Scholar. The first step of this search was conducted using integrated keywords problem solving model , problem solving process, problem solving steps . These keywords were combined with the Boolean operator AND with the second keywords values approach, value-based . The inclusion criteria were used to identify research that: presents theoretical backgrounds and/or empirical evidences; performed within the last 5 years; within an educational context; availability of full text. The sources appropriate for this review was very limited in scope (N = 2).
We implemented the second search only with the same set of the integrated keywords. The inclusion criteria were the same except the date; this criterion was extended up to 10 years. This search presented 85 different sources. After reading the summaries, introductions and conclusions of the sources found, the sources that do not explicitly provide the process/models/steps of problem solving for teaching/learning purposes and eliminates values were excluded. Aiming to see a more accurate picture of the chosen topic, we selected secondary sources from these initial sources.
Several important issues were determined as well. First, most researchers ground their studies on existing problem solving models, however, not based on values. Second, some of them conducted empirical research in order to identify the process of studies participants’ problem solving. Therefore, we included sources without date restrictions trying to identify the principal sources that reveal the process/models/steps of problem solving. Third, decision-making is a part of problem solving process. Accordingly, we performed a search with the additional keywords decision-making AND values approach, value-based decision-making . We used such inclusion criteria: presents theoretical background and/or empirical evidence; no date restriction; within an educational context; availability of full text. These all searches resulted in a total of 16 (9 theoretical and 7 empirical) sources for inclusion. They were the main sources that contributed most fruitfully for the background. We used other sources for the justification the wholeness of the 4W framework. We present the principal results of the conducted literature review in the part ‘The background of the conceptual framework’.
3. The background of the conceptual framework
3.1. different approaches of how to solve a problem.
Researchers from different fields focus on problem solving. As a result, there still seems to be a lack of a conventional definition of problem solving. Regardless of some differences, there is an agreement that problem solving is a cognitive process and one of the meaningful and significant ways of learning ( Funke, 2014 ; Jonassen, 1997 ; Mayer & Wittrock, 2006 ). Differing in approaches to solving a problem, researchers ( Collins, Sibthorp, & Gookin, 2016 ; Jonassen, 1997 ; Litzinger et al., 2010 ; Mayer & Wittrock, 2006 ; O’Loughlin & McFadzean, 1999 ; ect.) present a variety of models that differ in the number of distinct steps. What is similar in these models is that they stress the procedural process of problem solving with the focus on the development of specific skills and competences.
For the sake of this paper, we have focused on those models of problem solving that clarify the process and draw attention to values, specifically, on Huitt (1992) , Basadur, Ellspermann, and Evans (1994) , and Morton (1997) . Integrating the creative approach to problem solving, Newell and Simon (1972) presents six phases: phase 1 - identifying the problem, phase 2 - understanding the problem, phase 3 - posing solutions, phase 4 - choosing solutions, phase 5 - implementing solutions, and phase 6 - final analysis. The weakness of this model is that these phases do not necessarily follow one another, and several can coincide. However, coping with simultaneously occurring phases could be a challenge, especially if these are, for instance, phases five and six. Certainly, it may be necessary to return to the previous phases for further analysis. According to Basadur et al. (1994) , problem solving consists of problem generation, problem formulation, problem solving, and solution implementation stages. Huitt (1992) distinguishes four stages in problem solving: input, processing, output, and review. Both Huitt (1992) and Basadur et al. (1994) four-stage models emphasize a sequential process of problem solving. Thus, problem solving includes four stages that are used in education. For example, problem-based learning employs such stages as introduction of the problem, problem analysis and learning issues, discovery and reporting, solution presentation and evaluation ( Chua, Tan, & Liu, 2016 ). Even PISA 2012 framework for problem solving composes four stages: exploring and understanding, representing and formulating, planning and executing, monitoring and reflecting ( OECD, 2013 ).
Drawing on various approaches to problem solving, it is possible to notice that although each stage is named differently, it is possible to reveal some general steps. These steps reflect the essential idea of problem solving: a search for the solution from the initial state to the desirable state. The identification of a problem and its contextual elements, the generation of alternatives to a problem solution, the evaluation of these alternatives according to specific criteria, the choice of an alternative for a solution, the implementation, and monitoring of the solution are the main proceeding steps in problem solving.
3.2. Value-based approaches relevant for problem solving
Huitt (1992) suggests that important values are among the criteria for the evaluation of alternatives and the effectiveness of a chosen solution. Basadur et al. (1994) point out to visible values in the problem formulation. Morton (1997) underlines that interests, investigation, prevention, and values of all types, which may influence the process, inspire every phase of problem solving. However, the aforementioned authors do not go deeper and do not seek to disclose the significance of values for problem solving.
Decision-making research shows more possibilities for problem solving and values integration. Sheehan and Schmidt (2015) model of ethical decision-making includes moral sensitivity, moral judgment, moral motivation, and moral action where values are presented in the component of moral motivation. Another useful approach concerned with values comes from decision-making in management. It is the concept of Value-Focused Thinking (VFT) proposed by Keeney (1994) . The author argues that the goals often are merely means of achieving results in traditional models of problem solving. Such models frequently do not help to identify logical links between the problem solving goals, values, and alternatives. Thus, according to Keeney (1994) , the decision-making starts with values as they are stated in the goals and objectives of decision-makers. VFT emphasizes the core values of decision-makers that are in a specific context as well as how to find a way to achieve them by using means-ends analysis. The weakness of VFT is its restriction to this means-ends analysis. According to Shin, Jonassen, and McGee (2003) , in searching for a solution, such analysis is weak as the problem solver focuses simply on removing inadequacies between the current state and the goal state. The strengths of this approach underline that values are included in the decision before alternatives are created. Besides, values help to find creative and meaningful alternatives and to assess them. Further, they include the forthcoming consequences of the decision. As VFT emphasizes the significant function of values and clarifies the possibilities of their integration into problem solving, we adapt this approach in the current paper.
3.3. The effect of values when solving a problem
In a broader sense, values provide a direction to a person’s life. Whereas the importance of values is relatively stable over time and across situations, Roccas et al. (2017) argue that values differ in their importance to a person. Verplanken and Holland (2002) investigated the relationship between values and choices or behavior. The research revealed that the activation of a value and the centrality of a value to the self, are the essential elements for value-guided behavior. The activation of values could happen in such cases: when values are the primary focus of attention; if the situation or the information a person is confronted with implies values; when the self is activated. The centrality of a particular value is ‘the degree to which an individual has incorporated this value as part of the self’ ( Verplanken & Holland, 2002, p.436 ). Thus, the perceived importance of values and attention to them determine value-guided behavior.
According to Argandoña (2003) , values can change due to external (changing values in the people around, in society, changes in situations, etc.) and internal (internalization by learning) factors affecting the person. The research by Hall and Davis (2007) indicates that the decision-makers’ applied value profile temporarily changed as they analyzed the issue from multiple perspectives and revealed the existence of a broader set of values. The study by Kirkman (2017) reveal that participants noticed the relevance of moral values to situations they encountered in various contexts.
Values are tightly related to personal integrity and identity and guide an individual’s perception, judgment, and behavior ( Halstead, 1996 ; Schwartz, 1992 ). Sheehan and Schmidt (2015) found that values influenced ethical decision-making of accounting study programme students when they uncovered their own values and grounded in them their individual codes of conduct for future jobs. Hence, the effect of values discloses by observing the problem solver’s decision-making. The latter observations could explain the abundance of ethics-laden research in decision-making rather than in problem solving.
Contemporary researchers emphasize the creative potential of values. Dollinger et al. (2007) , Kasof et al. (2007) , Lebedeva, Schwartz, Plucker, & Van De Vijver, 2019 present to some extent similar findings as they all used Schwartz Value Survey (respectively: Schwartz, 1992 ; ( Schwartz, 1994 ), Schwartz, 2012 ). These studies disclosed that such values as self-direction, stimulation and universalism foster creativity. Kasof et al. (2007) focused their research on identified motivation. Stressing that identified motivation is the only fully autonomous type of external motivation, authors define it as ‘the desire to commence an activity as a means to some end that one greatly values’ (p.106). While identified motivation toward specific values (italic in original) fosters the search for outcomes that express those specific values, this research demonstrated that it could also inhibit creative behavior. Thus, inhibition is necessary, especially in the case where reckless creativity could have painful consequences, for example, when an architect creates a beautiful staircase without a handrail. Consequently, creativity needs to be balanced.
Ultimately, values affect human beings’ lives as they express the motivational goals ( Schwartz, 1992 ). These motivational goals are the comprehensive criteria for a person’s choices when solving problems. Whereas some problem solving models only mention values as possible evaluation criteria, but they do not give any significant suggestions when and how the problem solver could think about the values coming to the understanding that his/her values direct the decision how to solve the problem. The authors of this paper claim that the identification of personal values and their choice for a solution need to be specified in the process of problem solving. This position is clearly reflected in humanistic philosophy and psychology ( Maslow, 2011 ; Rogers, 1995 ) that emphasize personal responsibility for discovering personal values through critical questioning, honest self-esteem, self-discovery, and open-mindedness in the constant pursuit of the truth in the path of individual life. However, fundamental (of humankind) and societal values should be taken into account. McLaughlin (1997) argues that a clear boundary between societal and personal values is difficult to set as they are intertwined due to their existence in complex cultural, social, and political contexts at a particular time. A person is related to time and context when choosing values. As a result, a person assumes existing values as implicit knowledge without as much as a consideration. This is particularly evident in the current consumer society.
Moreover, McLaughlin (1997) stresses that if a particular action should be tolerated and legitimated by society, it does not mean that this action is ultimately morally acceptable in all respects. Education has possibilities to reveal this. One such possibility is to turn to the capability approach ( Sen, 1990 ), which emphasizes what people are effectively able to do and to be. Capability, according to Sen (1990) , reflects a person’s freedom to choose between various ways of living, i.e., the focus is on the development of a person’s capability to choose the life he/she has a reason to value. According to Webster (2017) , ‘in order for people to value certain aspects of life, they need to appreciate the reasons and purposes – the whys – for certain valuing’ (italic in original; p.75). As values reflect and foster these whys, education should supplement the development of capability with attention to values ( Saito, 2003 ). In order to attain this possibility, a person has to be aware of and be able to understand two facets of values. Argandoña (2003) defines them as rationality and virtuality . Rationality refers to values as the ideal of conduct and involves the development of a person’s understanding of what values and why he/she should choose them when solving a problem. Virtuality approaches values as virtues and includes learning to enable a person to live according to his/her values. However, according to McLaughlin (1997) , some people may have specific values that are deep or self-evidently essential. These values are based on fundamental beliefs about the nature and purpose of the human being. Other values can be more or less superficial as they are based on giving priority to one or the other. Thus, virtuality highlights the depth of life harmonized to fundamentally rather than superficially laden values. These approaches inform the rationale for the framework of problem solving through values.
4. The 4W framework of problem solving through values
Similar to the above-presented stages of the problem solving processes, the introduced framework by the authors of this paper revisits them (see Fig. 1 ). The framework is titled 4W as its four stages respond to such questions: Analyzing the Problem: W hat ? → Choice of the value(s): W hat is the background for the solution? → Search for the alternative w ays of the solution: How ? → The rationale for problem solution: W hy is this alternative significant ? The stages of this framework cover seven steps that reveal the logical sequence of problem solving through values.
The 4 W framework: problem solving through values.
Though systematic problem solving models are criticized for being linear and inflexible (e.g., Treffinger & Isaksen, 2005 ), the authors of this paper assume a structural view of the problem solving process due to several reasons. First, the framework enables problem solvers to understand the thorough process of problem solving through values. Second, this framework reveals the depth of each stage and step. Third, problem solving through values encourages tackling problems that have crucial consequences. Only by understanding and mastering the coherence of how problems those require a value-based approach need to be addressed, a problem solver will be able to cope with them in the future. Finally, this framework aims at helping to recognize, to underline personal values, to solve problems through thinking about values, and to take responsibility for choices, even value-based. The feedback supports a direct interrelation between stages. It shapes a dynamic process of problem solving through values.
The first stage of problem solving through values - ‘ The analysis of the problem: What? ’- consists of three steps (see Fig. 1 ). The first step is ‘ Recognizing the problematic situation and naming the problem ’. This step is performed in the following sequence. First, the problem solver should perceive the problematic situation he/she faces in order to understand it. Dostál (2015) argues that the problematic situation has the potential to become the problem necessary to be addressed. Although each problem is limited by its context, not every problematic situation turns into a problem. This is related to the problem solver’s capability and the perception of reality: a person may not ‘see’ the problem if his/her capability to perceive it is not developed ( Dorst, 2006 ; Dostál, 2015 ). Second, after the problem solver recognizes the existence of the problematic situation, the problem solver has to identify the presence or absence of the problem itself, i.e. to name the problem. This is especially important in the case of the ill-structured problems since they cannot be directly visible to the problem solver ( Jonassen, 1997 ). Consequently, this step allows to determine whether the problem solver developed or has acquired the capability to perceive the problematic situation and the problem (naming the problem).
The second step is ‘ Analysing the context of the problem as a reason for its rise ’. At this step, the problem solver aims to analyse the context of the problem. The latter is one of the external issues, and it determines the solution ( Jonassen, 2011 ). However, if more attention is paid to the solution of the problem, it diverts attention from the context ( Fields, 2006 ). The problem solver has to take into account both the conveyed and implied contextual elements in the problematic situation ( Dostál, 2015 ). In other words, the problem solver has to examine it through his/her ‘contextual lenses’ ( Hester & MacG, 2017 , p.208). Thus, during this step the problem solver needs to identify the elements that shape the problem - reasons and circumstances that cause the problem, the factors that can be changed, and stakeholders that are involved in the problematic situation. Whereas the elements of the context mentioned above are within the problematic situation, the problem solver can control many of them. Such control can provide unique ways for a solution.
Although the problem solver tries to predict the undesirable results, some criteria remain underestimated. For that reason, it is necessary to highlight values underlying the various possible goals during the analysis ( Fields, 2006 ). According to Hester and MacG (2017) , values express one of the main features of the context and direct the attention of the problem solver to a given problematic situation. Hence, the problem solver should explore the value-based positions that emerge in the context of the problem.
The analysis of these contextual elements focus not only on a specific problematic situation but also on the problem that has emerged. This requires setting boundaries of attention for an in-depth understanding ( Fields, 2006 ; Hester & MacG, 2017 ). Such understanding influences several actions: (a) the recognition of inappropriate aspects of the problematic situation; (b) the emergence of paths in which identified aspects are expected to change. These actions ensure consistency and safeguard against distractions. Thus, the problem solver can now recognize and identify the factors that influence the problem although they are outside of the problematic situation. However, the problem solver possesses no control over them. With the help of such context analysis, the problem solver constructs a thorough understanding of the problem. Moreover, the problem solver becomes ready to look at the problem from different perspectives.
The third step is ‘ Perspectives emerging in the problem ’. Ims and Zsolnai (2009) argue that problem solving usually contains a ‘problematic search’. Such a search is a pragmatic activity as the problem itself induces it. Thus, the problem solver searches for a superficial solution. As a result, the focus is on control over the problem rather than a deeper understanding of the problem itself. The analysis of the problem, especially including value-based approaches, reveals the necessity to consider the problem from a variety of perspectives. Mitroff (2000) builds on Linstone (1989) ideas and claims that a sound foundation of both naming and solving any problem lays in such perspectives: the technical/scientific, the interpersonal/social, the existential, and the systemic (see Table 1 ).
The main characteristics of four perspectives for problem solving
Characteristic of perspectives | Technical/scientific perspective | Interpersonal/social perspective | Existential perspective | Systemic perspective |
---|---|---|---|---|
Goal | Problem solving focuses on implementation and a product | Action, stability, process | Lives and fates of individual human beings and their life-worlds | Problem within the context of a larger whole; trying to establish the nature of different relationships |
Mode of inquiry | Modelling, data, analysis | Consensual and adversary | Intuition, learning, experience | Encompass all above mentioned; connecting to the whole |
Ethical basis | Rationality | Justice, fairness | Morality | Holistic approach |
Planning horizon | Long-term | Intermediate | Short-term and long-term | Long-term, focus on the consequences |
Communication | Technical report, briefing | Language differs for insiders, public | Personality important | Personality important as a part of a whole |
Whereas all problems have significant aspects of each perspective, disregarding one or another may lead to the wrong way of solving the problem. While analysing all four perspectives is essential, this does not mean that they all are equally important. Therefore, it is necessary to justify why one or another perspective is more relevant and significant in a particular case. Such analysis, according to Linstone (1989) , ‘forces us to distinguish how we are looking from what we are looking at’ (p.312; italic in original). Hence, the problem solver broadens the understanding of various perspectives and develops the capability to see the bigger picture ( Hall & Davis, 2007 ).
The problem solver aims to identify and describe four perspectives that have emerged in the problem during this step. In order to identify perspectives, the problem solver search answers to the following questions. First, regarding the technical/scientific perspective: What technical/scientific reasons are brought out in the problem? How and to what extent do they influence a problem and its context? Second, regarding the interpersonal/social perspective: What is the impact of the problem on stakeholders? How does it influence their attitudes, living conditions, interests, needs? Third, regarding the existential perspective: How does the problem affect human feelings, experiences, perception, and/or discovery of meaning? Fourth, regarding the systemic perspective: What is the effect of the problem on the person → community → society → the world? Based on the analysis of this step, the problem solver obtains a comprehensive picture of the problem. The next stage is to choose the value(s) that will address the problem.
The second stage - ‘ The choice of value(s): What is the background for the solution?’ - includes the fourth and the fifth steps. The fourth step is ‘ The identification of value(s) as a base for the solution ’. During this step, the problem solver should activate his/her value(s) making it (them) explicit. In order to do this, the problem solver proceeds several sub-steps. First, the problem solver reflects taking into account the analysis done in previous steps. He/she raises up questions revealing values that lay in the background of this analysis: What values does this analyzed context allow me to notice? What values do different perspectives of the problem ‘offer’? Such questioning is important as values are deeply hidden ( Verplanken & Holland, 2002 ) and they form a bias, which restricts the development of the capability to see from various points of view ( Hall & Paradice, 2007 ). In the 4W framework, this bias is relatively eliminated due to the analysis of the context and exploration of the perspectives of a problem. As a result, the problem solver discovers distinct value-based positions and gets an opportunity to identify the ‘value uncaptured’ ( Yang, Evans, Vladimirova, & Rana, 2017, p.1796 ) within the problem analyzed. The problem solver observes that some values exist in the context (the second step) and the disclosed perspectives (the third step). Some of the identified values do not affect the current situation as they are not required, or their potential is not exploited. Thus, looking through various value-based lenses, the problem solver can identify and discover a congruence between the opportunities offered by the values in the problem’s context, disclosed perspectives and his/her value(s). Consequently, the problem solver decides what values he/she chooses as a basis for the desired solution. Since problems usually call for a list of values, it is important to find out their order of priority. Thus, the last sub-step requires the problem solver to choose between fundamentally and superficially laden values.
In some cases, the problem solver identifies that a set of values (more than one value) can lead to the desired solution. If a person chooses this multiple value-based position, two options emerge. The first option is concerned with the analysis of each value-based position separately (from the fifth to the seventh step). In the second option, a person has to uncover which of his/her chosen values are fundamentally laden and which are superficially chosen, considering the desired outcome in the current situation. Such clarification could act as a strategy where the path for the desired solution is possible going from superficially chosen value(s) to fundamentally laden one. When a basis for the solution is established, the problem solver formulates the goal for the desired solution.
The fifth step is ‘ The formulation of the goal for the solution ’. Problem solving highlights essential points that reveal the structure of a person’s goals; thus, a goal is the core element of problem solving ( Funke, 2014 ). Meantime, values reflect the motivational content of the goals ( Schwartz, 1992 ). The attention on the chosen value not only activates it, but also motivates the problem solver. The motivation directs the formulation of the goal. In such a way, values explicitly become a basis of the goal for the solution. Thus, this step involves the problem solver in formulating the goal for the solution as the desired outcome.
The way how to take into account value(s) when formulating the goal is the integration of value(s) chosen by the problem solver in the formulation of the goal ( Keeney, 1994 ). For this purpose the conjunction of a context for a solution (it is analyzed during the second step) and a direction of preference (the chosen value reveals it) serves for the formulation of the goal (that represents the desired solution). In other words, a value should be directly included into the formulation of the goal. The goal could lose value, if value is not included into the goal formulation and remains only in the context of the goal. Let’s take the actual example concerning COVID-19 situation. Naturally, many countries governments’ preference represents such value as human life (‘it is important of every individual’s life’). Thus, most likely the particular country government’s goal of solving the COVID situation could be to save the lifes of the country people. The named problem is a complex where the goal of its solution is also complex, although it sounds simple. However, if the goal as desired outcome is formulated without the chosen value, this value remains in the context and its meaning becomes tacit. In the case of above presented example - the goal could be formulated ‘to provide hospitals with the necessary equipment and facilities’. Such goal has the value ‘human’s life’ in the context, but eliminates the complexity of the problem that leads to a partial solution of the problem. Thus, this step from the problem solver requires caution when formulating the goal as the desired outcome. For this reason, maintaining value is very important when formulating the goal’s text. To avoid the loss of values and maintain their proposed direction, is necessary to take into account values again when creating alternatives.
The third stage - ‘ Search for the alternative ways for a solution: How? ’ - encompasses the sixth step, which is called ‘ Creation of value-based alternatives ’. Frequently problem solver invokes a traditional view of problem identification, generation of alternatives, and selection of criteria for evaluating findings. Keeney (1994) ; Ims and Zsolnai (2009) criticize this rational approach as it supports a search for a partial solution where an active search for alternatives is neglected. Moreover, a problematic situation, according to Perkins (2009) , can create the illusion of a fully framed problem with some apparent weighting and some variations of choices. In this case, essential and distinct alternatives to the solution frequently become unnoticeable. Therefore, Perkins (2009) suggest to replace the focus on the attempts to comprehend the problem itself. Thinking through the ‘value lenses’ offers such opportunities. The deep understanding of the problem leads to the search for the alternative ways of a solution.
Thus, the aim of this step is for the problem solver to reveal the possible alternative ways for searching a desired solution. Most people think they know how to create alternatives, but often without delving into the situation. First of all, the problem solver based on the reflection of (but not limited to) the analysis of the context and the perspectives of the problem generates a range of alternatives. Some of these alternatives represent anchored thinking as he/she accepts the assumptions implicit in generated alternatives and with too little focus on values.
The chosen value with the formulated goal indicates direction and encourages a broader and more creative search for a solution. Hence, the problem solver should consider some of the initial alternatives that could best support the achievement of the desired solution. Values are the principles for evaluating the desirability of any alternative or outcome ( Keeney, 1994 ). Thus, planned actions should reveal the desirable mode of conduct. After such consideration, he/she should draw up a plan setting out the actions required to implement each of considered alternatives.
Lastly, after a thorough examination of each considered alternative and a plan of its implementation, the problem solver chooses one of them. If the problem solver does not see an appropriate alternative, he/she develops new alternatives. However, the problem solver may notice (and usually does) that more than one alternative can help him/her to achieve the desired solution. In this case, he/she indicates which alternative is the main one and has to be implemented in the first place, and what other alternatives and in what sequence will contribute in searching for the desired solution.
The fourth stage - ‘ The rationale for the solution: Why ’ - leads to the seventh step: ‘ The justification of the chosen alternative ’. Keeney (1994) emphasizes the compatibility of alternatives in question with the values that guide the action. This underlines the importance of justifying the choices a person makes where the focus is on taking responsibility. According to Zsolnai (2008) , responsibility means a choice, i.e., the perceived responsibility essentially determines its choice. Responsible justification allows for discovering optimal balance when choosing between distinct value-based alternatives. It also refers to the alternative solution that best reflects responsibility in a particular value context, choice, and implementation.
At this stage, the problem solver revisits the chosen solution and revises it. The problem solver justifies his/her choice based on the following questions: Why did you choose this? Why is this alternative significant looking from the technical/scientific, the interpersonal/social, the existential, and the systemic perspectives? Could you take full responsibility for the implementation of this alternative? Why? How clearly do envisaged actions reflect the goal of the desired solution? Whatever interests and for what reasons do this alternative satisfies in principle? What else do you see in the chosen alternative?
As mentioned above, each person gives priority to one aspect or another. The problem solver has to provide solid arguments for the justification of the chosen alternative. The quality of arguments, according to Jonassen (2011) , should be judged based on the quality of the evidence supporting the chosen alternative and opposing arguments that can reject solutions. Besides, the pursuit of value-based goals reflects the interests of the individual or collective interests. Therefore, it becomes critical for the problem solver to justify the level of responsibility he/she takes in assessing the chosen alternative. Such a complex evaluation of the chosen alternative ensures the acceptance of an integral rather than unilateral solution, as ‘recognizing that, in the end, people benefit most when they act for the common good’ ( Sternberg, 2012, p.46 ).
5. Discussion
The constant emphasis on thinking about values as explicit reasoning in the 4W framework (especially from the choice of the value(s) to the rationale for problem solution) reflects the pursuit of virtues. Virtues form the features of the character that are related to the choice ( Argandoña, 2003 ; McLaughlin, 2005 ). Hence, the problem solver develops value-grounded problem solving capability as the virtuality instead of employing rationality for problem solving.
Argandoña (2003) suggests that, in order to make a sound valuation process of any action, extrinsic, transcendent, and intrinsic types of motives need to be considered. They cover the respective types of values. The 4W framework meets these requirements. An extrinsic motive as ‘attaining the anticipated or expected satisfaction’ ( Argandoña, 2003, p.17 ) is reflected in the formulation of the goal of the solution, the creation of alternatives and especially in the justification of the chosen alternative way when the problem solver revisits the external effect of his/her possible action. Transcendent motive as ‘generating certain effects in others’ ( Argandoña, 2003, p.17 ) is revealed within the analysis of the context, perspectives, and creating alternatives. When the learner considers the creation of alternatives and revisits the chosen alternative, he/she pays more attention to these motives. Two types of motives mentioned so far are closely related to an intrinsic motive that emphasizes learning development within the problem solver. These motives confirm that problem solving is, in fact, lifelong learning. In light of these findings, the 4W framework is concerned with some features of value internalization as it is ‘a psychological outcome of conscious mind reasoning about values’ ( Yazdani & Akbarilakeh, 2017, p.1 ).
The 4W framework is complicated enough in terms of learning. One issue is concerned with the educational environments ( Jucevičienė, 2008 ) required to enable the 4W framework. First, the learning paradigm, rather than direct instruction, lies at the foundation of such environments. Second, such educational environments include the following dimensions: (1) educational goal; (2) learning capacity of the learners; (3) educational content relevant to the educational goal: ways and means of communicating educational content as information presented in advance (they may be real, people among them, as well as virtual); (5) methods and means of developing educational content in the process of learners’ performance; (6) physical environment relevant to the educational goal and conditions of its implementation as well as different items in the environment; (7) individuals involved in the implementation of the educational goal.
Another issue is related to exercising this framework in practice. Despite being aware of the 4W framework, a person may still not want to practice problem solving through values, since most of the solutions are going to be complicated, or may even be painful. One idea worth looking into is to reveal the extent to which problem solving through values can become a habit of mind. Profound focus on personal values, context analysis, and highlighting various perspectives can involve changes in the problem solver’s habit of mind. The constant practice of problem solving through values could first become ‘the epistemic habit of mind’ ( Mezirow, 2009, p.93 ), which means a personal way of knowing things and how to use that knowledge. This echoes Kirkman (2017) findings. The developed capability to notice moral values in situations that students encountered changed some students’ habit of mind as ‘for having “ruined” things by making it impossible not to attend to values in such situations!’ (the feedback from one student; Kirkman, 2017, p.12 ). However, this is not enough, as only those problems that require a value-based approach are addressed. Inevitably, the problem solver eventually encounters the challenges of nurturing ‘the moral-ethical habit of mind’ ( Mezirow, 2009, p.93 ). In pursuance to develop such habits of mind, the curriculum should include the necessity of the practising of the 4W framework.
Thinking based on values when solving problems enables the problem solver to engage in thoughtful reflection in contrast to pragmatic and superficial thinking supported by the consumer society. Reflection begins from the first stage of the 4W framework. As personal values are the basis for the desired solution, the problem solver is also involved in self-reflection. The conscious and continuous reflection on himself/herself and the problematic situation reinforce each step of the 4W framework. Moreover, the fourth stage (‘The rationale for the solution: Why’) involves the problem solver in critical reflection as it concerned with justification of ‘the why , the reasons for and the consequences of what we do’ (italic, bold in original; Mezirow, 1990, p.8 ). Exercising the 4W framework in practice could foster reflective practice. Empirical evidence shows that reflective practice directly impacts knowledge, skills and may lead to changes in personal belief systems and world views ( Slade, Burnham, Catalana, & Waters, 2019 ). Thus, with the help of reflective practice it is possible to identify in more detail how and to what extent the 4W framework has been mastered, what knowledge gained, capabilities developed, how point of views changed, and what influence the change process.
Critical issues related to the development of problem solving through values need to be distinguished when considering and examining options for the implementation of the 4W framework at educational institutions. First, the question to what extent can the 4W framework be incorporated into various subjects needs to be answered. Researchers could focus on applying the 4W framework to specific subjects in the humanities and social sciences. The case is with STEM subjects. Though value issues of sustainable development and ecology are of great importance, in reality STEM teaching is often restricted to the development of knowledge and skills, leaving aside the thinking about values. The special task of the researchers is to help practitioners to apply the 4W framework in STEM subjects. Considering this, researchers could employ the concept of ‘dialogic space’ ( Wegerif, 2011, p.3 ) which places particular importance of dialogue in the process of education emphasizing both the voices of teachers and students, and materials. In addition, the dimensions of educational environments could be useful aligning the 4W framework with STEM subjects. As STEM teaching is more based on solving various special tasks and/or integrating problem-based learning, the 4W framework could be a meaningful tool through which content is mastered, skills are developed, knowledge is acquired by solving pre-prepared specific tasks. In this case, the 4W framework could act as a mean addressing values in STEM teaching.
Second is the question of how to enable the process of problem solving through values. In the current paper, the concept of enabling is understood as an integral component of the empowerment. Juceviciene et al. (2010) specify that at least two perspectives can be employed to explain empowerment : a) through the power of legitimacy (according to Freire, 1996 ); and b) through the perspective of conditions for the acquisition of the required knowledge, capabilities, and competence, i.e., enabling. In this paper the 4W framework does not entail the issue of legitimacy. This issue may occur, for example, when a teacher in economics is expected to provide students with subject knowledge only, rather than adding tasks that involve problem solving through values. Yet, the issue of legitimacy is often implicit. A widespread phenomenon exists that teaching is limited to certain periods that do not have enough time for problem solving through values. The issue of legitimacy as an organizational task that supports/or not the implementation of the 4W framework in any curriculum is a question that calls for further discussion.
Third (if not the first), the issue of an educator’s competence to apply such a framework needs to be addressed. In order for a teacher to be a successful enabler, he/she should have the necessary competence. This is related to the specific pedagogical knowledge and skills, which are highly dependent on the peculiarities of the subject being taught. Nowadays actualities are encouraging to pay attention to STEM subjects and their teacher training. For researchers and teacher training institutions, who will be interested in implementing the 4W framework in STEM subjects, it would be useful to draw attention to ‘a material-dialogic approach to pedagogy’ ( Hetherington & Wegerif, 2018, p.27 ). This approach creates the conditions for a deep learning of STEM subjects revealing additional opportunities for problem solving through values in teaching. Highlighting these opportunities is a task for further research.
In contrast to traditional problem solving models, the 4W framework is more concerned with educational purposes. The prescriptive approach to teaching ( Thorne, 1994 ) is applied to the 4W framework. This approach focuses on providing guidelines that enable students to make sound decisions by making explicit value judgements. The limitation is that the 4W framework is focused on thinking but not executing. It does not include the fifth stage, which would focus on the execution of the decision how to solve the problem. This stage may contain some deviation from the predefined process of the solution of the problem.
6. Conclusions
The current paper focuses on revealing the essence of the 4W framework, which is based on enabling the problem solver to draw attention to when, how, and why it is essential to think about values during the problem solving process from the perspective of it’s design. Accordingly, the 4W framework advocates the coherent approach when solving a problem by using a creative potential of values.
The 4W framework allows the problem solver to look through the lens of his/her values twice. The first time, while formulating the problem solving goal as the desired outcome. The second time is when the problem solver looks deeper into his/her values while exploring alternative ways to solve problems. The problem solver is encouraged to reason about, find, accept, reject, compare values, and become responsible for the consequences of the choices grounded on his/her values. Thus, the problem solver could benefit from the 4W framework especially when dealing with issues having crucial consequences.
An educational approach reveals that the 4W framework could enable the development of value-grounded problem solving capability. As problem solving encourages the development of higher-order thinking skills, the consistent inclusion of values enriches them.
The 4W framework requires the educational environments for its enablement. The enablement process of problem solving through values could be based on the perspective of conditions for the acquisition of the required knowledge and capability. Continuous practice of this framework not only encourages reflection, but can also contribute to the creation of the epistemic habit of mind. Applying the 4W framework to specific subjects in the humanities and social sciences might face less challenge than STEM ones. The issue of an educator’s competence to apply such a framework is highly important. The discussed issues present significant challenges for researchers and educators. Caring that the curriculum of different courses should foresee problem solving through values, both practicing and empirical research are necessary.
Declaration of interests
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Both authors have approved the final article.
- Argandoña A. Fostering values in organizations. Journal of Business Ethics. 2003; 45 (1–2):15–28. https://link.springer.com/content/pdf/10.1023/A:1024164210743.pdf [ Google Scholar ]
- Barber S. A truly “Transformative” MBA: Executive education for the fourth industrial revolution. Journal of Pedagogic Development. 2018; 8 (2):44–55. [ Google Scholar ]
- Barnett R. McGraw-Hill Education; UK): 2007. Will to learn: Being a student in an age of uncertainty. [ Google Scholar ]
- Baron R.A., Zhao H., Miao Q. Personal motives, moral disengagement, and unethical decisions by entrepreneurs: Cognitive mechanisms on the “slippery slope” Journal of Business Ethics. 2015; 128 (1):107–118. doi: 10.1007/s10551-014-2078-y. [ CrossRef ] [ Google Scholar ]
- Basadur M., Ellspermann S.J., Evans G.W. A new methodology for formulating ill-structured problems. Omega. 1994; 22 (6):627–645. doi: 10.1016/0305-0483(94)90053-1. [ CrossRef ] [ Google Scholar ]
- Blanco E., Schirmbeck F., Costa C. International Conference on Remote Engineering and Virtual Instrumentation . Springer; Cham: 2018. Vocational Education for the Industrial Revolution; pp. 649–658. [ Google Scholar ]
- Chua B.L., Tan O.S., Liu W.C. Journey into the problem-solving process: Cognitive functions in a PBL environment. Innovations in Education and Teaching International. 2016; 53 (2):191–202. doi: 10.1080/14703297.2014.961502. [ CrossRef ] [ Google Scholar ]
- Collins R.H., Sibthorp J., Gookin J. Developing ill-structured problem-solving skills through wilderness education. Journal of Experiential Education. 2016; 39 (2):179–195. doi: 10.1177/1053825916639611. [ CrossRef ] [ Google Scholar ]
- Csapó B., Funke J., editors. The nature of problem solving: Using research to inspire 21st century learning. OECD Publishing; 2017. The development and assessment of problem solving in 21st-century schools. (Chapter 1). [ CrossRef ] [ Google Scholar ]
- Dollinger S.J., Burke P.A., Gump N.W. Creativity and values. Creativity Research Journal. 2007; 19 (2-3):91–103. doi: 10.1080/10400410701395028. [ CrossRef ] [ Google Scholar ]
- Donovan S.J., Guss C.D., Naslund D. Improving dynamic decision making through training and self-reflection. Judgment and Decision Making. 2015; 10 (4):284–295. http://digitalcommons.unf.edu/apsy_facpub/2 [ Google Scholar ]
- Dorst K. Design problems and design paradoxes. Design Issues. 2006; 22 (3):4–17. doi: 10.1162/desi.2006.22.3.4. [ CrossRef ] [ Google Scholar ]
- Dostál J. Theory of problem solving. Procedia-Social and Behavioral Sciences. 2015; 174 :2798–2805. doi: 10.1016/j.sbspro.2015.01.970. [ CrossRef ] [ Google Scholar ]
- Fields A.M. Ill-structured problems and the reference consultation: The librarian’s role in developing student expertise. Reference Services Review. 2006; 34 (3):405–420. doi: 10.1108/00907320610701554. [ CrossRef ] [ Google Scholar ]
- Freire P. Continuum; New York: 1996. Pedagogy of the oppressed (revised) [ Google Scholar ]
- Funke J. Problem solving: What are the important questions?. Proceedings of the 36th Annual Conference of the Cognitive Science Society; Austin, TX: Cognitive Science Society; 2014. pp. 493–498. [ Google Scholar ]
- Hall D.J., Davis R.A. Engaging multiple perspectives: A value-based decision-making model. Decision Support Systems. 2007; 43 (4):1588–1604. doi: 10.1016/j.dss.2006.03.004. [ CrossRef ] [ Google Scholar ]
- Hall D.J., Paradice D. Investigating value-based decision bias and mediation: do you do as you think? Communications of the ACM. 2007; 50 (4):81–85. [ Google Scholar ]
- Halstead J.M. Values and values education in schools. In: Halstead J.M., Taylor M.J., editors. Values in education and education in values. The Falmer Press; London: 1996. pp. 3–14. [ Google Scholar ]
- Harland T., Pickering N. Routledge; 2010. Values in higher education teaching. [ Google Scholar ]
- Hester P.T., MacG K. Springer; New York: 2017. Systemic decision making: Fundamentals for addressing problems and messes. [ Google Scholar ]
- Hetherington L., Wegerif R. Developing a material-dialogic approach to pedagogy to guide science teacher education. Journal of Education for Teaching. 2018; 44 (1):27–43. doi: 10.1080/02607476.2018.1422611. [ CrossRef ] [ Google Scholar ]
- Huitt W. Problem solving and decision making: Consideration of individual differences using the Myers-Briggs type indicator. Journal of Psychological Type. 1992; 24 (1):33–44. [ Google Scholar ]
- Ims K.J., Zsolnai L. The future international manager. Palgrave Macmillan; London: 2009. Holistic problem solving; pp. 116–129. [ Google Scholar ]
- Jonassen D. Supporting problem solving in PBL. Interdisciplinary Journal of Problem-based Learning. 2011; 5 (2):95–119. doi: 10.7771/1541-5015.1256. [ CrossRef ] [ Google Scholar ]
- Jonassen D.H. Instructional design models for well-structured and III-structured problem-solving learning outcomes. Educational Technology Research and Development. 1997; 45 (1):65–94. doi: 10.1007/BF02299613. [ CrossRef ] [ Google Scholar ]
- Jucevičienė P. Educational and learning environments as a factor for socioeducational empowering of innovation. Socialiniai mokslai. 2008; 1 :58–70. [ Google Scholar ]
- Jucevičienė P., Gudaitytė D., Karenauskaitė V., Lipinskienė D., Stanikūnienė B., Tautkevičienė G. Technologija; Kaunas: 2010. Universiteto edukacinė galia: Atsakas XXI amžiaus iššūkiams [The educational power of university: the response to the challenges of the 21st century] [ Google Scholar ]
- Kasof J., Chen C., Himsel A., Greenberger E. Values and creativity. Creativity Research Journal. 2007; 19 (2–3):105–122. doi: 10.1080/10400410701397164. [ CrossRef ] [ Google Scholar ]
- Keeney R.L. Creativity in decision making with value-focused thinking. MIT Sloan Management Review. 1994; 35 (4):33–41. [ Google Scholar ]
- Kirkman R. Problem-based learning in engineering ethics courses. Interdisciplinary Journal of Problem-based Learning. 2017; 11 (1) doi: 10.7771/1541-5015.1610. [ CrossRef ] [ Google Scholar ]
- Lebedeva N., Schwartz S., Plucker J., Van De Vijver F. Domains of everyday creativity and personal values. Frontiers in Psychology. 2019; 9 :1–16. doi: 10.3389/fpsyg.2018.02681. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
- Linstone H.A. Multiple perspectives: Concept, applications, and user guidelines. Systems Practice. 1989; 2 (3):307–331. [ Google Scholar ]
- Litzinger T.A., Meter P.V., Firetto C.M., Passmore L.J., Masters C.B., Turns S.R.…Zappe S.E. A cognitive study of problem solving in statics. Journal of Engineering Education. 2010; 99 (4):337–353. [ Google Scholar ]
- Maslow A.H. Vaga; Vilnius: 2011. Būties psichologija. [Psychology of Being] [ Google Scholar ]
- Mayer R., Wittrock M. Problem solving. In: Alexander P., Winne P., editors. Handbook of educational psychology. Psychology Press; New York, NY: 2006. pp. 287–303. [ Google Scholar ]
- McLaughlin T. The educative importance of ethos. British Journal of Educational Studies. 2005; 53 (3):306–325. doi: 10.1111/j.1467-8527.2005.00297.x. [ CrossRef ] [ Google Scholar ]
- McLaughlin T.H. Technologija; Kaunas: 1997. Šiuolaikinė ugdymo filosofija: demokratiškumas, vertybės, įvairovė [Contemporary philosophy of education: democracy, values, diversity] [ Google Scholar ]
- Mezirow J. Jossey-Bass Publishers; San Francisco: 1990. Fostering critical reflection in adulthood; pp. 1–12. https://my.liberatedleaders.com.au/wp-content/uploads/2017/02/How-Critical-Reflection-triggers-Transformative-Learning-Mezirow.pdf [ Google Scholar ]
- Mezirow J. Contemporary theories of learning. Routledge; 2009. An overview on transformative learning; pp. 90–105. (Chapter 6) [ Google Scholar ]
- Mitroff I. Šviesa; Kaunas: 2000. Kaip neklysti šiais beprotiškais laikais: ar mokame spręsti esmines problemas. [How not to get lost in these crazy times: do we know how to solve essential problems] [ Google Scholar ]
- Morton L. Teaching creative problem solving: A paradigmatic approach. Cal. WL Rev. 1997; 34 :375. [ Google Scholar ]
- Nadda P. Need for value based education. International Education and Research Journal. 2017; 3 (2) http://ierj.in/journal/index.php/ierj/article/view/690/659 [ Google Scholar ]
- Newell A., Simon H.A. Prentice-Hall; Englewood Cliffs, NJ: 1972. Human problem solving. [ Google Scholar ]
- OECD . PISA, OECD Publishing; Paris: 2013. PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy . https://www.oecd.org/pisa/pisaproducts/PISA%202012%20framework%20e-book_final.pdf [ Google Scholar ]
- OECD . PISA, OECD Publishing; 2018. PISA 2015 results in focus . https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf [ Google Scholar ]
- O’Loughlin A., McFadzean E. Toward a holistic theory of strategic problem solving. Team Performance Management: An International Journal. 1999; 5 (3):103–120. [ Google Scholar ]
- Perkins D.N. Decision making and its development. In: Callan E., Grotzer T., Kagan J., Nisbett R.E., Perkins D.N., Shulman L.S., editors. Education and a civil society: Teaching evidence-based decision making. American Academy of Arts and Sciences; Cambridge, MA: 2009. pp. 1–28. (Chapter 1) [ Google Scholar ]
- Roccas S., Sagiv L., Navon M. Values and behavior. Cham: Springer; 2017. Methodological issues in studying personal values; pp. 15–50. [ Google Scholar ]
- Rogers C.R. Houghton Mifflin Harcourt; Boston: 1995. On becoming a person: A therapist’s view of psychotherapy. [ Google Scholar ]
- Saito M. Amartya Sen’s capability approach to education: A critical exploration. Journal of Philosophy of Education. 2003; 37 (1):17–33. doi: 10.1111/1467-9752.3701002. [ CrossRef ] [ Google Scholar ]
- Schwartz S.H. Universals in the content and structure of values: Theoretical advances and empirical tests in 20 countries. In: Zanna M.P., editor. Vol. 25. Academic Press; 1992. pp. 1–65. (Advances in experimental social psychology). [ Google Scholar ]
- Schwartz S.H. Are there universal aspects in the structure and contents of human values? Journal of social issues. 1994; 50 (4):19–45. [ Google Scholar ]
- Schwartz S.H. An overview of the Schwartz theory of basic values. Online Readings in Psychology and Culture. 2012; 2 (1):1–20. doi: 10.9707/2307-0919.1116. [ CrossRef ] [ Google Scholar ]
- Sen A. Development as capability expansion. The community development reader. 1990:41–58. http://www.masterhdfs.org/masterHDFS/wp-content/uploads/2014/05/Sen-development.pdf [ Google Scholar ]
- Sheehan N.T., Schmidt J.A. Preparing accounting students for ethical decision making: Developing individual codes of conduct based on personal values. Journal of Accounting Education. 2015; 33 (3):183–197. doi: 10.1016/j.jaccedu.2015.06.001. [ CrossRef ] [ Google Scholar ]
- Shepherd D.A., Patzelt H., Baron R.A. “I care about nature, but…”: Disengaging values in assessing opportunities that cause harm. The Academy of Management Journal. 2013; 56 (5):1251–1273. doi: 10.5465/amj.2011.0776. [ CrossRef ] [ Google Scholar ]
- Shin N., Jonassen D.H., McGee S. Predictors of well‐structured and ill‐structured problem solving in an astronomy simulation. Journal of Research in Science Teaching. 2003; 40 (1):6–33. doi: 10.1002/tea.10058. [ CrossRef ] [ Google Scholar ]
- Slade M.L., Burnham T.J., Catalana S.M., Waters T. The impact of reflective practice on teacher candidates’ learning. International Journal for the Scholarship of Teaching and Learning. 2019; 13 (2):15. doi: 10.20429/ijsotl.2019.130215. [ CrossRef ] [ Google Scholar ]
- Snyder H. Literature review as a research methodology: An overview and guidelines. Journal of Business Research. 2019; 104 :333–339. doi: 10.1016/j.jbusres.2019.07.039. [ CrossRef ] [ Google Scholar ]
- Sternberg R. Teaching for ethical reasoning. International Journal of Educational Psychology. 2012; 1 (1):35–50. doi: 10.4471/ijep.2012.03. [ CrossRef ] [ Google Scholar ]
- Sternberg R. Speculations on the role of successful intelligence in solving contemporary world problems. Journal of Intelligence. 2017; 6 (1):4. doi: 10.3390/jintelligence6010004. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
- Thorne D.M. Environmental ethics in international business education: Descriptive and prescriptive dimensions. Journal of Teaching in International Business. 1994; 5 (1–2):109–122. doi: 10.1300/J066v05n01_08. [ CrossRef ] [ Google Scholar ]
- Treffinger D.J., Isaksen S.G. Creative problem solving: The history, development, and implications for gifted education and talent development. The Gifted Child Quarterly. 2005; 49 (4):342–353. doi: 10.1177/001698620504900407. [ CrossRef ] [ Google Scholar ]
- Verplanken B., Holland R.W. Motivated decision making: Effects of activation and self-centrality of values on choices and behavior. Journal of Personality and Social Psychology. 2002; 82 (3):434–447. doi: 10.1037/0022-3514.82.3.434. [ PubMed ] [ CrossRef ] [ Google Scholar ]
- Webster R.S. Re-enchanting education and spiritual wellbeing. Routledge; 2017. Being spiritually educated; pp. 73–85. [ Google Scholar ]
- Wegerif R. Towards a dialogic theory of how children learn to think. Thinking Skills and Creativity. 2011; 6 (3):179–190. doi: 10.1016/j.tsc.2011.08.002. [ CrossRef ] [ Google Scholar ]
- Yang M., Evans S., Vladimirova D., Rana P. Value uncaptured perspective for sustainable business model innovation. Journal of Cleaner Production. 2017; 140 :1794–1804. doi: 10.1016/j.jclepro.2016.07.102. [ CrossRef ] [ Google Scholar ]
- Yazdani S., Akbarilakeh M. The model of value-based curriculum for medicine and surgery education in Iran. Journal of Minimally Invasive Surgical Sciences. 2017; 6 (3) doi: 10.5812/minsurgery.14053. [ CrossRef ] [ Google Scholar ]
- Zsolnai L. Transaction Publishers; New Brunswick and London: 2008. Responsible decision making. [ Google Scholar ]
The Art of Effective Problem Solving: A Step-by-Step Guide
Author: Daniel Croft
Daniel Croft is an experienced continuous improvement manager with a Lean Six Sigma Black Belt and a Bachelor's degree in Business Management. With more than ten years of experience applying his skills across various industries, Daniel specializes in optimizing processes and improving efficiency. His approach combines practical experience with a deep understanding of business fundamentals to drive meaningful change.
Whether we realise it or not, problem solving skills are an important part of our daily lives. From resolving a minor annoyance at home to tackling complex business challenges at work, our ability to solve problems has a significant impact on our success and happiness. However, not everyone is naturally gifted at problem-solving, and even those who are can always improve their skills. In this blog post, we will go over the art of effective problem-solving step by step.
You will learn how to define a problem, gather information, assess alternatives, and implement a solution, all while honing your critical thinking and creative problem-solving skills. Whether you’re a seasoned problem solver or just getting started, this guide will arm you with the knowledge and tools you need to face any challenge with confidence. So let’s get started!
Problem Solving Methodologies
Individuals and organisations can use a variety of problem-solving methodologies to address complex challenges. 8D and A3 problem solving techniques are two popular methodologies in the Lean Six Sigma framework.
Methodology of 8D (Eight Discipline) Problem Solving:
The 8D problem solving methodology is a systematic, team-based approach to problem solving. It is a method that guides a team through eight distinct steps to solve a problem in a systematic and comprehensive manner.
The 8D process consists of the following steps:
- Form a team: Assemble a group of people who have the necessary expertise to work on the problem.
- Define the issue: Clearly identify and define the problem, including the root cause and the customer impact.
- Create a temporary containment plan: Put in place a plan to lessen the impact of the problem until a permanent solution can be found.
- Identify the root cause: To identify the underlying causes of the problem, use root cause analysis techniques such as Fishbone diagrams and Pareto charts.
- Create and test long-term corrective actions: Create and test a long-term solution to eliminate the root cause of the problem.
- Implement and validate the permanent solution: Implement and validate the permanent solution’s effectiveness.
- Prevent recurrence: Put in place measures to keep the problem from recurring.
- Recognize and reward the team: Recognize and reward the team for its efforts.
Download the 8D Problem Solving Template
A3 Problem Solving Method:
The A3 problem solving technique is a visual, team-based problem-solving approach that is frequently used in Lean Six Sigma projects. The A3 report is a one-page document that clearly and concisely outlines the problem, root cause analysis, and proposed solution.
The A3 problem-solving procedure consists of the following steps:
- Determine the issue: Define the issue clearly, including its impact on the customer.
- Perform root cause analysis: Identify the underlying causes of the problem using root cause analysis techniques.
- Create and implement a solution: Create and implement a solution that addresses the problem’s root cause.
- Monitor and improve the solution: Keep an eye on the solution’s effectiveness and make any necessary changes.
Subsequently, in the Lean Six Sigma framework, the 8D and A3 problem solving methodologies are two popular approaches to problem solving. Both methodologies provide a structured, team-based problem-solving approach that guides individuals through a comprehensive and systematic process of identifying, analysing, and resolving problems in an effective and efficient manner.
Step 1 – Define the Problem
The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause. To avoid this pitfall, it is critical to thoroughly understand the problem.
To begin, ask yourself some clarifying questions:
- What exactly is the issue?
- What are the problem’s symptoms or consequences?
- Who or what is impacted by the issue?
- When and where does the issue arise?
Answering these questions will assist you in determining the scope of the problem. However, simply describing the problem is not always sufficient; you must also identify the root cause. The root cause is the underlying cause of the problem and is usually the key to resolving it permanently.
Try asking “why” questions to find the root cause:
- What causes the problem?
- Why does it continue?
- Why does it have the effects that it does?
By repeatedly asking “ why ,” you’ll eventually get to the bottom of the problem. This is an important step in the problem-solving process because it ensures that you’re dealing with the root cause rather than just the symptoms.
Once you have a firm grasp on the issue, it is time to divide it into smaller, more manageable chunks. This makes tackling the problem easier and reduces the risk of becoming overwhelmed. For example, if you’re attempting to solve a complex business problem, you might divide it into smaller components like market research, product development, and sales strategies.
To summarise step 1, defining the problem is an important first step in effective problem-solving. You will be able to identify the root cause and break it down into manageable parts if you take the time to thoroughly understand the problem. This will prepare you for the next step in the problem-solving process, which is gathering information and brainstorming ideas.
Step 2 – Gather Information and Brainstorm Ideas
Gathering information and brainstorming ideas is the next step in effective problem solving. This entails researching the problem and relevant information, collaborating with others, and coming up with a variety of potential solutions. This increases your chances of finding the best solution to the problem.
Begin by researching the problem and relevant information. This could include reading articles, conducting surveys, or consulting with experts. The goal is to collect as much information as possible in order to better understand the problem and possible solutions.
Next, work with others to gather a variety of perspectives. Brainstorming with others can be an excellent way to come up with new and creative ideas. Encourage everyone to share their thoughts and ideas when working in a group, and make an effort to actively listen to what others have to say. Be open to new and unconventional ideas and resist the urge to dismiss them too quickly.
Finally, use brainstorming to generate a wide range of potential solutions. This is the place where you can let your imagination run wild. At this stage, don’t worry about the feasibility or practicality of the solutions; instead, focus on generating as many ideas as possible. Write down everything that comes to mind, no matter how ridiculous or unusual it may appear. This can be done individually or in groups.
Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the next step in the problem-solving process, which we’ll go over in greater detail in the following section.
Step 3 – Evaluate Options and Choose the Best Solution
Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the third step in effective problem solving, and it entails weighing the advantages and disadvantages of each solution, considering their feasibility and practicability, and selecting the solution that is most likely to solve the problem effectively.
To begin, weigh the advantages and disadvantages of each solution. This will assist you in determining the potential outcomes of each solution and deciding which is the best option. For example, a quick and easy solution may not be the most effective in the long run, whereas a more complex and time-consuming solution may be more effective in solving the problem in the long run.
Consider each solution’s feasibility and practicability. Consider the following:
- Can the solution be implemented within the available resources, time, and budget?
- What are the possible barriers to implementing the solution?
- Is the solution feasible in today’s political, economic, and social environment?
You’ll be able to tell which solutions are likely to succeed and which aren’t by assessing their feasibility and practicability.
Finally, choose the solution that is most likely to effectively solve the problem. This solution should be based on the criteria you’ve established, such as the advantages and disadvantages of each solution, their feasibility and practicability, and your overall goals.
It is critical to remember that there is no one-size-fits-all solution to problems. What is effective for one person or situation may not be effective for another. This is why it is critical to consider a wide range of solutions and evaluate each one based on its ability to effectively solve the problem.
Step 4 – Implement and Monitor the Solution
When you’ve decided on the best solution, it’s time to put it into action. The fourth and final step in effective problem solving is to put the solution into action, monitor its progress, and make any necessary adjustments.
To begin, implement the solution. This may entail delegating tasks, developing a strategy, and allocating resources. Ascertain that everyone involved understands their role and responsibilities in the solution’s implementation.
Next, keep an eye on the solution’s progress. This may entail scheduling regular check-ins, tracking metrics, and soliciting feedback from others. You will be able to identify any potential roadblocks and make any necessary adjustments in a timely manner if you monitor the progress of the solution.
Finally, make any necessary modifications to the solution. This could entail changing the solution, altering the plan of action, or delegating different tasks. Be willing to make changes if they will improve the solution or help it solve the problem more effectively.
It’s important to remember that problem solving is an iterative process, and there may be times when you need to start from scratch. This is especially true if the initial solution does not effectively solve the problem. In these situations, it’s critical to be adaptable and flexible and to keep trying new solutions until you find the one that works best.
To summarise, effective problem solving is a critical skill that can assist individuals and organisations in overcoming challenges and achieving their objectives. Effective problem solving consists of four key steps: defining the problem, generating potential solutions, evaluating alternatives and selecting the best solution, and implementing the solution.
You can increase your chances of success in problem solving by following these steps and considering factors such as the pros and cons of each solution, their feasibility and practicability, and making any necessary adjustments. Furthermore, keep in mind that problem solving is an iterative process, and there may be times when you need to go back to the beginning and restart. Maintain your adaptability and try new solutions until you find the one that works best for you.
- Novick, L.R. and Bassok, M., 2005. Problem Solving . Cambridge University Press.
Was this helpful?
Daniel Croft
Hi im Daniel continuous improvement manager with a Black Belt in Lean Six Sigma and over 10 years of real-world experience across a range sectors, I have a passion for optimizing processes and creating a culture of efficiency. I wanted to create Learn Lean Siigma to be a platform dedicated to Lean Six Sigma and process improvement insights and provide all the guides, tools, techniques and templates I looked for in one place as someone new to the world of Lean Six Sigma and Continuous improvement.
Waste Walk: 5 Expert Tips to Improve Your Waste Walks
The Paradox of Poka Yoke: When Error Prevention Causes Errors
Free lean six sigma templates.
Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.
Understanding Process Performance: Pp and Ppk
Understand Process Performance (Pp) and Process Performance Index (Ppk) to assess and improve manufacturing processes.…
LIFO or FIFO for Stock Management?
Choosing between LIFO and FIFO for stock management depends on factors like product nature, market…
Are There Any Official Standards for Six Sigma?
Are there any official standards for Six Sigma? While Six Sigma is a well-defined methodology…
5S Floor Marking Best Practices
In lean manufacturing, the 5S System is a foundational tool, involving the steps: Sort, Set…
How to Measure the ROI of Continuous Improvement Initiatives
When it comes to business, knowing the value you’re getting for your money is crucial,…
8D Problem-Solving: Common Mistakes to Avoid
In today’s competitive business landscape, effective problem-solving is the cornerstone of organizational success. The 8D…
- Newsletters
- Best Industries
- Business Plans
- Home-Based Business
- The UPS Store
- Customer Service
- Black in Business
- Your Next Move
- Female Founders
- Best Workplaces
- Company Culture
- Public Speaking
- HR/Benefits
- Productivity
- All the Hats
- Digital Transformation
- Artificial Intelligence
- Bringing Innovation to Market
- Cloud Computing
- Social Media
- Data Detectives
- Exit Interview
- Bootstrapping
- Crowdfunding
- Venture Capital
- Business Models
- Personal Finance
- Founder-Friendly Investors
- Upcoming Events
- Inc. 5000 Vision Conference
- Become a Sponsor
- Cox Business
- Verizon Business
- Branded Content
- Apply Inc. 5000 US
Inc. Premium
How Bill Gates Approaches Problem Solving: Don't Reinvent the Wheel
While bill gates is known for innovative thinking, his approach to achieving major goals leans heavily on the intelligence of others..
Having the right answers is important, but success can also be achieved by asking the right questions.
Take Southwest Airlines founder Herb Kelleher, who regularly asked himself one question : "Will this (decision) make Southwest Airlines the low-cost provider?" Or Steve Jobs, who regularly asked one question : "How many times did you say no today?"
Add Bill Gates to the list. According to the most recent post on his GatesNotes blog:
Ever since I was a teenager, I've tackled every big new problem the same way: by starting off with two questions. I used this technique at Microsoft, and I still use it today. I ask these questions literally every week about Covid-19. Here they are: Who has dealt with this problem well? And what can we learn from them?
We all tend to work and live within self-created boundaries. We do the kinds of things we normally do. We read the kinds of books we normally read. We interact with the kind of people we normally interact with. In the process, we learn a little more about the things we already know. That feels like progress.
But what if you step outside your self-created boundaries? What if you decide to go where you normally don't go, and do what you normally don't do?
That, in a nutshell, is the Gates approach. If you want to solve a huge problem or achieve a huge goal, don't waste time trying to reinvent the wheel.
Instead ...
Find a great wheel you can adopt for yourself
When I worked in book manufacturing, I was part of a group that toured a nearby Coors bottling plant. We came away with more productivity improvement ideas than we could implement in a year.
The facility was impressive, but it's not like Coors was doing incredible things. They were just doing different -- to us -- things.
We knew what we knew. But we didn't know what they knew, and that we could apply those things to make ourselves even better.
I've had countless similar experiences. I went riding with pro mountain biker Jeremiah Bishop and discovered more about cycling in 30 minutes than I had learned in the previous year. I worked out with FitnessGenes co-founder and CEO Dr. Dan Reardon and discovered more about lifting in that hour than I had learned over years of trying to gain strength and size. Talking with Navy SEAL Ray Care totally changed how I think about perseverance and determination , even though after doing 100,000 pushups, I thought I already knew a lot about how to stay the course .
The same has happened to you. You've met people who totally changed your perspective. You've read books that made you think differently about your life, whether professionally or personally. You've gone places, and done things you normally wouldn't do, that made you a smarter and better person.
Yet we don't actively seek out those experiences.
Take a page from the Gates playbook. Instead of trying to brainstorm your way to a new solution to a problem or a new process to achieve a goal, ask yourself two questions:
"Who has dealt with this problem well? And what can I learn from them?"
The best way to solve a problem or achieve a goal is to find people who have actually solved that problem or achieved that goal. Start from the end, the solution or achievement, and then work backward.
That approach is the great equalizer, because you won't need to be unusually creative. Or unusually smart. Or unusually connected, or educated, or wealthy.
You just need to be willing to look, and study, and then folllow the steps and process you discover.
Best of all, you'll follow that process knowing -- instead of hoping -- that your hard work will pay off.
Because what works for others can definitely work for you.
A refreshed look at leadership from the desk of CEO and chief content officer Stephanie Mehta
Privacy Policy
Center for Teaching
Teaching problem solving.
Print Version
Tips and Techniques
Expert vs. novice problem solvers, communicate.
- Have students identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
- If students are unable to articulate their concerns, determine where they are having trouble by asking them to identify the specific concepts or principles associated with the problem.
- In a one-on-one tutoring session, ask the student to work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
- When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)
Encourage Independence
- Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
- Have students work through problems on their own. Ask directing questions or give helpful suggestions, but provide only minimal assistance and only when needed to overcome obstacles.
- Don’t fear group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others
Be sensitive
- Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing positive reinforcement to let students know when they have mastered a new concept or skill.
Encourage Thoroughness and Patience
- Try to communicate that the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.
Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills, a teacher should be aware of principles and strategies of good problem solving in his or her discipline .
The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.
Teaching Guides
Quick Links
- Services for Departments and Schools
- Examples of Online Instructional Modules
40 problem-solving techniques and processes
All teams and organizations encounter challenges. Approaching those challenges without a structured problem solving process can end up making things worse.
Proven problem solving techniques such as those outlined below can guide your group through a process of identifying problems and challenges , ideating on possible solutions , and then evaluating and implementing the most suitable .
In this post, you'll find problem-solving tools you can use to develop effective solutions. You'll also find some tips for facilitating the problem solving process and solving complex problems.
Design your next session with SessionLab
Join the 150,000+ facilitators using SessionLab.
Recommended Articles
A step-by-step guide to planning a workshop, 54 great online tools for workshops and meetings, how to create an unforgettable training session in 8 simple steps.
- 18 Free Facilitation Resources We Think You’ll Love
What is problem solving?
Problem solving is a process of finding and implementing a solution to a challenge or obstacle. In most contexts, this means going through a problem solving process that begins with identifying the issue, exploring its root causes, ideating and refining possible solutions before implementing and measuring the impact of that solution.
For simple or small problems, it can be tempting to skip straight to implementing what you believe is the right solution. The danger with this approach is that without exploring the true causes of the issue, it might just occur again or your chosen solution may cause other issues.
Particularly in the world of work, good problem solving means using data to back up each step of the process, bringing in new perspectives and effectively measuring the impact of your solution.
Effective problem solving can help ensure that your team or organization is well positioned to overcome challenges, be resilient to change and create innovation. In my experience, problem solving is a combination of skillset, mindset and process, and it’s especially vital for leaders to cultivate this skill.
What is the seven step problem solving process?
A problem solving process is a step-by-step framework from going from discovering a problem all the way through to implementing a solution.
With practice, this framework can become intuitive, and innovative companies tend to have a consistent and ongoing ability to discover and tackle challenges when they come up.
You might see everything from a four step problem solving process through to seven steps. While all these processes cover roughly the same ground, I’ve found a seven step problem solving process is helpful for making all key steps legible.
We’ll outline that process here and then follow with techniques you can use to explore and work on that step of the problem solving process with a group.
The seven-step problem solving process is:
1. Problem identification
The first stage of any problem solving process is to identify the problem(s) you need to solve. This often looks like using group discussions and activities to help a group surface and effectively articulate the challenges they’re facing and wish to resolve.
Be sure to align with your team on the exact definition and nature of the problem you’re solving. An effective process is one where everyone is pulling in the same direction – ensure clarity and alignment now to help avoid misunderstandings later.
2. Problem analysis and refinement
The process of problem analysis means ensuring that the problem you are seeking to solve is the right problem . Choosing the right problem to solve means you are on the right path to creating the right solution.
At this stage, you may look deeper at the problem you identified to try and discover the root cause at the level of people or process. You may also spend some time sourcing data, consulting relevant parties and creating and refining a problem statement.
Problem refinement means adjusting scope or focus of the problem you will be aiming to solve based on what comes up during your analysis. As you analyze data sources, you might discover that the root cause means you need to adjust your problem statement. Alternatively, you might find that your original problem statement is too big to be meaningful approached within your current project.
Remember that the goal of any problem refinement is to help set the stage for effective solution development and deployment. Set the right focus and get buy-in from your team here and you’ll be well positioned to move forward with confidence.
3. Solution generation
Once your group has nailed down the particulars of the problem you wish to solve, you want to encourage a free flow of ideas connecting to solving that problem. This can take the form of problem solving games that encourage creative thinking or techniquess designed to produce working prototypes of possible solutions.
The key to ensuring the success of this stage of the problem solving process is to encourage quick, creative thinking and create an open space where all ideas are considered. The best solutions can often come from unlikely places and by using problem solving techniques that celebrate invention, you might come up with solution gold.
4. Solution development
No solution is perfect right out of the gate. It’s important to discuss and develop the solutions your group has come up with over the course of following the previous problem solving steps in order to arrive at the best possible solution. Problem solving games used in this stage involve lots of critical thinking, measuring potential effort and impact, and looking at possible solutions analytically.
During this stage, you will often ask your team to iterate and improve upon your front-running solutions and develop them further. Remember that problem solving strategies always benefit from a multitude of voices and opinions, and not to let ego get involved when it comes to choosing which solutions to develop and take further.
Finding the best solution is the goal of all problem solving workshops and here is the place to ensure that your solution is well thought out, sufficiently robust and fit for purpose.
5. Decision making and planning
Nearly there! Once you’ve got a set of possible, you’ll need to make a decision on which to implement. This can be a consensus-based group decision or it might be for a leader or major stakeholder to decide. You’ll find a set of effective decision making methods below.
Once your group has reached consensus and selected a solution, there are some additional actions that also need to be decided upon. You’ll want to work on allocating ownership of the project, figure out who will do what, how the success of the solution will be measured and decide the next course of action.
Set clear accountabilities, actions, timeframes, and follow-ups for your chosen solution. Make these decisions and set clear next-steps in the problem solving workshop so that everyone is aligned and you can move forward effectively as a group.
Ensuring that you plan for the roll-out of a solution is one of the most important problem solving steps. Without adequate planning or oversight, it can prove impossible to measure success or iterate further if the problem was not solved.
6. Solution implementation
This is what we were waiting for! All problem solving processes have the end goal of implementing an effective and impactful solution that your group has confidence in.
Project management and communication skills are key here – your solution may need to adjust when out in the wild or you might discover new challenges along the way. For some solutions, you might also implement a test with a small group and monitor results before rolling it out to an entire company.
You should have a clear owner for your solution who will oversee the plans you made together and help ensure they’re put into place. This person will often coordinate the implementation team and set-up processes to measure the efficacy of your solution too.
7. Solution evaluation
So you and your team developed a great solution to a problem and have a gut feeling it’s been solved. Work done, right? Wrong. All problem solving strategies benefit from evaluation, consideration, and feedback.
You might find that the solution does not work for everyone, might create new problems, or is potentially so successful that you will want to roll it out to larger teams or as part of other initiatives.
None of that is possible without taking the time to evaluate the success of the solution you developed in your problem solving model and adjust if necessary.
Remember that the problem solving process is often iterative and it can be common to not solve complex issues on the first try. Even when this is the case, you and your team will have generated learning that will be important for future problem solving workshops or in other parts of the organization.
It’s also worth underlining how important record keeping is throughout the problem solving process. If a solution didn’t work, you need to have the data and records to see why that was the case. If you go back to the drawing board, notes from the previous workshop can help save time.
What does an effective problem solving process look like?
Every effective problem solving process begins with an agenda . In our experience, a well-structured problem solving workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.
The format of a workshop ensures that you can get buy-in from your group, encourage free-thinking and solution exploration before making a decision on what to implement following the session.
This Design Sprint 2.0 template is an effective problem solving process from top agency AJ&Smart. It’s a great format for the entire problem solving process, with four-days of workshops designed to surface issues, explore solutions and even test a solution.
Check it for an example of how you might structure and run a problem solving process and feel free to copy and adjust it your needs!
For a shorter process you can run in a single afternoon, this remote problem solving agenda will guide you effectively in just a couple of hours.
Whatever the length of your workshop, by using SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.
The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!
Complete problem-solving methods
In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.
If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.
Six Thinking Hats
Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.
Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.
Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.
The Six Thinking Hats #creative thinking #meeting facilitation #problem solving #issue resolution #idea generation #conflict resolution The Six Thinking Hats are used by individuals and groups to separate out conflicting styles of thinking. They enable and encourage a group of people to think constructively together in exploring and implementing change, rather than using argument to fight over who is right and who is wrong.
Lightning Decision Jam
Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.
Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.
In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.
From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on.
By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages.
Lightning Decision Jam (LDJ) #action #decision making #problem solving #issue analysis #innovation #design #remote-friendly It doesn’t matter where you work and what your job role is, if you work with other people together as a team, you will always encounter the same challenges: Unclear goals and miscommunication that cause busy work and overtime Unstructured meetings that leave attendants tired, confused and without clear outcomes. Frustration builds up because internal challenges to productivity are not addressed Sudden changes in priorities lead to a loss of focus and momentum Muddled compromise takes the place of clear decision- making, leaving everybody to come up with their own interpretation. In short, a lack of structure leads to a waste of time and effort, projects that drag on for too long and frustrated, burnt out teams. AJ&Smart has worked with some of the most innovative, productive companies in the world. What sets their teams apart from others is not better tools, bigger talent or more beautiful offices. The secret sauce to becoming a more productive, more creative and happier team is simple: Replace all open discussion or brainstorming with a structured process that leads to more ideas, clearer decisions and better outcomes. When a good process provides guardrails and a clear path to follow, it becomes easier to come up with ideas, make decisions and solve problems. This is why AJ&Smart created Lightning Decision Jam (LDJ). It’s a simple and short, but powerful group exercise that can be run either in-person, in the same room, or remotely with distributed teams.
Problem Definition Process
While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design.
By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.
Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.
This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!
Problem Definition #problem solving #idea generation #creativity #online #remote-friendly A problem solving technique to define a problem, challenge or opportunity and to generate ideas.
The 5 Whys
Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges.
The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results.
By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.
The 5 Whys #hyperisland #innovation This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.
World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.
World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!
Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold.
World Cafe #hyperisland #innovation #issue analysis World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.
Discovery & Action Dialogue (DAD)
One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.
With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!
This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.
Discovery & Action Dialogue (DAD) #idea generation #liberating structures #action #issue analysis #remote-friendly DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.
Design Sprint 2.0
Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.
Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.
Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.
Open space technology
Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.
Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.
Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!
Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.
Open Space Technology #action plan #idea generation #problem solving #issue analysis #large group #online #remote-friendly Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation
Techniques to identify and analyze problems
Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.
While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.
We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.
Let’s take a look!
Fishbone Analysis
Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.
Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around.
Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish.
Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.
Fishbone Analysis #problem solving ##root cause analysis #decision making #online facilitation A process to help identify and understand the origins of problems, issues or observations.
Problem Tree
Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them.
In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.
Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.
Problem tree #define intentions #create #design #issue analysis A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.
SWOT Analysis
Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.
Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.
Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward.
SWOT analysis #gamestorming #problem solving #action #meeting facilitation The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.
Agreement-Certainty Matrix
Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.
The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results.
If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause.
Agreement-Certainty Matrix #issue analysis #liberating structures #problem solving You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic . A problem is simple when it can be solved reliably with practices that are easy to duplicate. It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably. A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail. Chaotic is when the context is too turbulent to identify a path forward. A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.” The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.
Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process.
Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.
It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.
SQUID #gamestorming #project planning #issue analysis #problem solving When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.
To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.
Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.
In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!
Speed Boat #gamestorming #problem solving #action Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.
The Journalistic Six
Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.
Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.
The Journalistic Six – Who What When Where Why How #idea generation #issue analysis #problem solving #online #creative thinking #remote-friendly A questioning method for generating, explaining, investigating ideas.
Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?
Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed.
Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.
No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.
Flip It! #gamestorming #problem solving #action Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.
LEGO Challenge
Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills.
The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.
What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO!
LEGO Challenge #hyperisland #team A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.
What, So What, Now What?
If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.
The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems.
Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.
Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken.
This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.
W³ – What, So What, Now What? #issue analysis #innovation #liberating structures You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!
Journalists
Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.
Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.
In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.
Journalists #vision #big picture #issue analysis #remote-friendly This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.
Problem-solving techniques for brainstorming solutions
Now you have the context and background of the problem you are trying to solving, now comes the time to start ideating and thinking about how you’ll solve the issue.
Here, you’ll want to encourage creative, free thinking and speed. Get as many ideas out as possible and explore different perspectives so you have the raw material for the next step.
Looking at a problem from a new angle can be one of the most effective ways of creating an effective solution. TRIZ is a problem-solving tool that asks the group to consider what they must not do in order to solve a challenge.
By reversing the discussion, new topics and taboo subjects often emerge, allowing the group to think more deeply and create ideas that confront the status quo in a safe and meaningful way. If you’re working on a problem that you’ve tried to solve before, TRIZ is a great problem-solving method to help your team get unblocked.
Making Space with TRIZ #issue analysis #liberating structures #issue resolution You can clear space for innovation by helping a group let go of what it knows (but rarely admits) limits its success and by inviting creative destruction. TRIZ makes it possible to challenge sacred cows safely and encourages heretical thinking. The question “What must we stop doing to make progress on our deepest purpose?” induces seriously fun yet very courageous conversations. Since laughter often erupts, issues that are otherwise taboo get a chance to be aired and confronted. With creative destruction come opportunities for renewal as local action and innovation rush in to fill the vacuum. Whoosh!
Mindspin
Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly.
With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation.
This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex.
MindSpin #teampedia #idea generation #problem solving #action A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.
The Creativity Dice
One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed.
In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.
Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable.
The Creativity Dice #creativity #problem solving #thiagi #issue analysis Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.
Idea and Concept Development
Brainstorming without structure can quickly become chaotic or frustrating. In a problem-solving context, having an ideation framework to follow can help ensure your team is both creative and disciplined.
In this method, you’ll find an idea generation process that encourages your group to brainstorm effectively before developing their ideas and begin clustering them together. By using concepts such as Yes and…, more is more and postponing judgement, you can create the ideal conditions for brainstorming with ease.
Idea & Concept Development #hyperisland #innovation #idea generation Ideation and Concept Development is a process for groups to work creatively and collaboratively to generate creative ideas. It’s a general approach that can be adapted and customized to suit many different scenarios. It includes basic principles for idea generation and several steps for groups to work with. It also includes steps for idea selection and development.
Problem-solving techniques for developing and refining solutions
The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to develop and refine your ideas in order to bring them closer to a solution that actually solves the problem.
Use these problem-solving techniques when you want to help your team think through their ideas and refine them as part of your problem solving process.
Improved Solutions
After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result.
One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution.
Improved Solutions #creativity #thiagi #problem solving #action #team You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.
Four Step Sketch
Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged.
By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.
Four-Step Sketch #design sprint #innovation #idea generation #remote-friendly The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper, Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint
Ensuring that everyone in a group is able to contribute to a discussion is vital during any problem solving process. Not only does this ensure all bases are covered, but its then easier to get buy-in and accountability when people have been able to contribute to the process.
1-2-4-All is a tried and tested facilitation technique where participants are asked to first brainstorm on a topic on their own. Next, they discuss and share ideas in a pair before moving into a small group. Those groups are then asked to present the best idea from their discussion to the rest of the team.
This method can be used in many different contexts effectively, though I find it particularly shines in the idea development stage of the process. Giving each participant time to concretize their ideas and develop them in progressively larger groups can create a great space for both innovation and psychological safety.
1-2-4-All #idea generation #liberating structures #issue analysis With this facilitation technique you can immediately include everyone regardless of how large the group is. You can generate better ideas and more of them faster than ever before. You can tap the know-how and imagination that is distributed widely in places not known in advance. Open, generative conversation unfolds. Ideas and solutions are sifted in rapid fashion. Most importantly, participants own the ideas, so follow-up and implementation is simplified. No buy-in strategies needed! Simple and elegant!
15% Solutions
Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change.
Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.
Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.
It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change.
15% Solutions #action #liberating structures #remote-friendly You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference. 15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change. With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.
Problem-solving techniques for making decisions and planning
After your group is happy with the possible solutions you’ve developed, now comes the time to choose which to implement. There’s more than one way to make a decision and the best option is often dependant on the needs and set-up of your group.
Sometimes, it’s the case that you’ll want to vote as a group on what is likely to be the most impactful solution. Other times, it might be down to a decision maker or major stakeholder to make the final decision. Whatever your process, here’s some techniques you can use to help you make a decision during your problem solving process.
How-Now-Wow Matrix
The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process.
When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.
Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud.
How-Now-Wow Matrix #gamestorming #idea generation #remote-friendly When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.
Impact and Effort Matrix
All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice.
The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.
Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them.
Impact and Effort Matrix #gamestorming #decision making #action #remote-friendly In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.
If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action?
Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus.
One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively.
Dotmocracy #action #decision making #group prioritization #hyperisland #remote-friendly Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.
Straddling the gap between decision making and planning, MoSCoW is a simple and effective method that allows a group team to easily prioritize a set of possible options.
Use this method in a problem solving process by collecting and summarizing all your possible solutions and then categorize them into 4 sections: “Must have”, “Should have”, “Could have”, or “Would like but won‘t get”.
This method is particularly useful when its less about choosing one possible solution and more about prioritorizing which to do first and which may not fit in the scope of your project. In my experience, complex challenges often require multiple small fixes, and this method can be a great way to move from a pile of things you’d all like to do to a structured plan.
MoSCoW #define intentions #create #design #action #remote-friendly MoSCoW is a method that allows the team to prioritize the different features that they will work on. Features are then categorized into “Must have”, “Should have”, “Could have”, or “Would like but won‘t get”. To be used at the beginning of a timeslot (for example during Sprint planning) and when planning is needed.
When it comes to managing the rollout of a solution, clarity and accountability are key factors in ensuring the success of the project. The RAACI chart is a simple but effective model for setting roles and responsibilities as part of a planning session.
Start by listing each person involved in the project and put them into the following groups in order to make it clear who is responsible for what during the rollout of your solution.
- Responsibility (Which person and/or team will be taking action?)
- Authority (At what “point” must the responsible person check in before going further?)
- Accountability (Who must the responsible person check in with?)
- Consultation (Who must be consulted by the responsible person before decisions are made?)
- Information (Who must be informed of decisions, once made?)
Ensure this information is easily accessible and use it to inform who does what and who is looped into discussions and kept up to date.
RAACI #roles and responsibility #teamwork #project management Clarifying roles and responsibilities, levels of autonomy/latitude in decision making, and levels of engagement among diverse stakeholders.
Problem-solving warm-up activities
All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.
Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.
Check-in / Check-out
Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process. Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute.
If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!
Check-in / Check-out #team #opening #closing #hyperisland #remote-friendly Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.
Doodling Together
Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start.
Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems.
Doodling Together #collaboration #creativity #teamwork #fun #team #visual methods #energiser #icebreaker #remote-friendly Create wild, weird and often funny postcards together & establish a group’s creative confidence.
Show and Tell
You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.
Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.
By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team!
Show and Tell #gamestorming #action #opening #meeting facilitation Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.
Constellations
Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.
Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible.
Constellations #trust #connection #opening #coaching #patterns #system Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.
Draw a Tree
Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.
Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic.
Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.
All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.
Draw a Tree #thiagi #opening #perspectives #remote-friendly With this game you can raise awarness about being more mindful, and aware of the environment we live in.
Closing activities for a problem-solving process
Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.
Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.
One Breath Feedback
Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round.
One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them.
One breath feedback #closing #feedback #action This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.
Who What When Matrix
Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.
The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward.
Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved.
Who/What/When Matrix #gamestorming #action #project planning With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.
Response cards
Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out!
Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.
Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised.
Response Cards #debriefing #closing #structured sharing #questions and answers #thiagi #action It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.
Tips for effective problem solving
Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.
Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!
Clearly define the problem
Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.
This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.
Don’t jump to conclusions
It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.
The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.
Try different approaches
Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.
Don’t take it personally
Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.
You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.
Get the right people in the room
Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!
If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.
Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.
Create psychologically safe spaces for discussion
Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner.
It can be tough for people to stand up and contribute if the problems or challenges are emotive or personal in nature. Try and create a psychologically safe space for these kinds of discussions and where possible, create regular opportunities for challenges to be brought up organically.
Document everything
The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!
Bring a facilitator
Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!
Develop your problem-solving skills
It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.
You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!
Design a great agenda
Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.
Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!
Save time and effort creating an effective problem solving process
A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?
With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks to build your agenda. When you make changes or update your agenda, your session timing adjusts automatically , saving you time on manual adjustments.
Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.
Explore how to use SessionLab to design effective problem solving workshops or watch this five minute video to see the planner in action!
Over to you
The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.
Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you!
James Smart is Head of Content at SessionLab. He’s also a creative facilitator who has run workshops and designed courses for establishments like the National Centre for Writing, UK. He especially enjoys working with young people and empowering others in their creative practice.
thank you very much for these excellent techniques
Certainly wonderful article, very detailed. Shared!
Your list of techniques for problem solving can be helpfully extended by adding TRIZ to the list of techniques. TRIZ has 40 problem solving techniques derived from methods inventros and patent holders used to get new patents. About 10-12 are general approaches. many organization sponsor classes in TRIZ that are used to solve business problems or general organiztational problems. You can take a look at TRIZ and dwonload a free internet booklet to see if you feel it shound be included per your selection process.
Leave a Comment Cancel reply
Your email address will not be published. Required fields are marked *
Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks. The flow starts with the first meeting with a client to define the purposes of a workshop.…
Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of great workshop tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your life easier and run better workshops and meetings. In fact, there are plenty of free online workshop tools and meeting…
How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace. In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…
Design your next workshop with SessionLab
Join the 150,000 facilitators using SessionLab
Sign up for free
How to Solve Problems
To bring the best ideas forward, teams must build psychological safety. by Laura Amico
Teams today aren’t just asked to execute tasks: They’re called upon to solve problems. You’d think that many brains working together would mean better solutions, but the reality is that too often problem-solving teams fall victim to inefficiency, conflict, and cautious conclusions. The two charts below will help your team think about how to collaborate better and come up with the best solutions for the thorniest challenges.
Partner Center
- Skip to main content
- Skip to primary sidebar
- Skip to footer
Additional menu
The 5 steps of the solving problem process
August 17, 2023 by MindManager Blog
Whether you run a business, manage a team, or work in an industry where change is the norm, it may feel like something is always going wrong. Thankfully, becoming proficient in the problem solving process can alleviate a great deal of the stress that business issues can create.
Understanding the right way to solve problems not only takes the guesswork out of how to deal with difficult, unexpected, or complex situations, it can lead to more effective long-term solutions.
In this article, we’ll walk you through the 5 steps of problem solving, and help you explore a few examples of problem solving scenarios where you can see the problem solving process in action before putting it to work.
Understanding the problem solving process
When something isn’t working, it’s important to understand what’s at the root of the problem so you can fix it and prevent it from happening again. That’s why resolving difficult or complex issues works best when you apply proven business problem solving tools and techniques – from soft skills, to software.
The problem solving process typically includes:
- Pinpointing what’s broken by gathering data and consulting with team members.
- Figuring out why it’s not working by mapping out and troubleshooting the problem.
- Deciding on the most effective way to fix it by brainstorming and then implementing a solution.
While skills like active listening, collaboration, and leadership play an important role in problem solving, tools like visual mapping software make it easier to define and share problem solving objectives, play out various solutions, and even put the best fit to work.
Before you can take your first step toward solving a problem, you need to have a clear idea of what the issue is and the outcome you want to achieve by resolving it.
For example, if your company currently manufactures 50 widgets a day, but you’ve started processing orders for 75 widgets a day, you could simply say you have a production deficit.
However, the problem solving process will prove far more valuable if you define the start and end point by clarifying that production is running short by 25 widgets a day, and you need to increase daily production by 50%.
Once you know where you’re at and where you need to end up, these five steps will take you from Point A to Point B:
- Figure out what’s causing the problem . You may need to gather knowledge and evaluate input from different documents, departments, and personnel to isolate the factors that are contributing to your problem. Knowledge visualization software like MindManager can help.
- Come up with a few viable solutions . Since hitting on exactly the right solution – right away – can be tough, brainstorming with your team and mapping out various scenarios is the best way to move forward. If your first strategy doesn’t pan out, you’ll have others on tap you can turn to.
- Choose the best option . Decision-making skills, and software that lets you lay out process relationships, priorities, and criteria, are invaluable for selecting the most promising solution. Whether it’s you or someone higher up making that choice, it should include weighing costs, time commitments, and any implementation hurdles.
- Put your chosen solution to work . Before implementing your fix of choice, you should make key personnel aware of changes that might affect their daily workflow, and set up benchmarks that will make it easy to see if your solution is working.
- Evaluate your outcome . Now comes the moment of truth: did the solution you implemented solve your problem? Do your benchmarks show you achieved the outcome you wanted? If so, congratulations! If not, you’ll need to tweak your solution to meet your problem solving goal.
In practice, you might not hit a home-run with every solution you execute. But the beauty of a repeatable process like problem solving is that you can carry out steps 4 and 5 again by drawing from the brainstorm options you documented during step 2.
Examples of problem solving scenarios
The best way to get a sense of how the problem solving process works before you try it for yourself is to work through some simple scenarios.
Here are three examples of how you can apply business problem solving techniques to common workplace challenges.
Scenario #1: Manufacturing
Building on our original manufacturing example, you determine that your company is consistently short producing 25 widgets a day and needs to increase daily production by 50%.
Since you’d like to gather data and input from both your manufacturing and sales order departments, you schedule a brainstorming session to discover the root cause of the shortage.
After examining four key production areas – machines, materials, methods, and management – you determine the cause of the problem: the material used to manufacture your widgets can only be fed into your equipment once the machinery warms up to a specific temperature for the day.
Your team comes up with three possible solutions.
- Leave your machinery running 24 hours so it’s always at temperature.
- Invest in equipment that heats up faster.
- Find an alternate material for your widgets.
After weighing the expense of the first two solutions, and conducting some online research, you decide that switching to a comparable but less expensive material that can be worked at a lower temperature is your best option.
You implement your plan, monitor your widget quality and output over the following week, and declare your solution a success when daily production increases by 100%.
Scenario #2: Service Delivery
Business training is booming and you’ve had to onboard new staff over the past month. Now you learn that several clients have expressed concern about the quality of your recent training sessions.
After speaking with both clients and staff, you discover there are actually two distinct factors contributing to your quality problem:
- The additional conference room you’ve leased to accommodate your expanding training sessions has terrible acoustics
- The AV equipment you’ve purchased to accommodate your expanding workforce is on back-order – and your new hires have been making do without
You could look for a new conference room or re-schedule upcoming training sessions until after your new equipment arrives. But your team collaboratively determines that the best way to mitigate both issues at once is by temporarily renting the high-quality sound and visual system they need.
Using benchmarks that include several weeks of feedback from session attendees, and random session spot-checks you conduct personally, you conclude the solution has worked.
Scenario #3: Marketing
You’ve invested heavily in product marketing, but still can’t meet your sales goals. Specifically, you missed your revenue target by 30% last year and would like to meet that same target this year.
After collecting and examining reams of information from your sales and accounting departments, you sit down with your marketing team to figure out what’s hindering your success in the marketplace.
Determining that your product isn’t competitively priced, you map out two viable solutions.
- Hire a third-party specialist to conduct a detailed market analysis.
- Drop the price of your product to undercut competitors.
Since you’re in a hurry for results, you decide to immediately reduce the price of your product and market it accordingly.
When revenue figures for the following quarter show sales have declined even further – and marketing surveys show potential customers are doubting the quality of your product – you revert back to your original pricing, revisit your problem solving process, and implement the market analysis solution instead.
With the valuable information you gain, you finally arrive at just the right product price for your target market and sales begin to pick up. Although you miss your revenue target again this year, you meet it by the second quarter of the following year.
Kickstart your collaborative brainstorming sessions and try MindManager for free today !
Ready to take the next step?
MindManager helps boost collaboration and productivity among remote and hybrid teams to achieve better results, faster.
Why choose MindManager?
MindManager® helps individuals, teams, and enterprises bring greater clarity and structure to plans, projects, and processes. It provides visual productivity tools and mind mapping software to help take you and your organization to where you want to be.
Explore MindManager
- Product overview
- All features
- Latest feature release
- App integrations
- project icon Project management
- Project views
- Custom fields
- Status updates
- goal icon Goals and reporting
- Reporting dashboards
- asana-intelligence icon Asana AI
- workflow icon Workflows and automation
- portfolio icon Resource management
- Capacity planning
- Time tracking
- my-task icon Admin and security
- Admin console
- Permissions
- list icon Personal
- premium icon Starter
- briefcase icon Advanced
- Goal management
- Organizational planning
- Project intake
- Resource planning
- Product launches
- View all uses arrow-right icon
- Work management resources Discover best practices, watch webinars, get insights
- Customer stories See how the world's best organizations drive work innovation with Asana
- Help Center Get lots of tips, tricks, and advice to get the most from Asana
- Asana Academy Sign up for interactive courses and webinars to learn Asana
- Developers Learn more about building apps on the Asana platform
- Community programs Connect with and learn from Asana customers around the world
- Events Find out about upcoming events near you
- Partners Learn more about our partner programs
- Asana for nonprofits Get more information on our nonprofit discount program, and apply.
- Project plans
- Team goals & objectives
- Team continuity
- Meeting agenda
- View all templates arrow-right icon
- Collaboration |
- Turn your team into skilled problem sol ...
Turn your team into skilled problem solvers with these problem-solving strategies
Picture this, you're handling your daily tasks at work and your boss calls you in and says, "We have a problem."
Unfortunately, we don't live in a world in which problems are instantly resolved with the snap of our fingers. Knowing how to effectively solve problems is an important professional skill to hone. If you have a problem that needs to be solved, what is the right process to use to ensure you get the most effective solution?
In this article we'll break down the problem-solving process and how you can find the most effective solutions for complex problems.
See Asana in action
Drive clarity and impact at scale by connecting work and workflows to company-wide goals.
What is problem solving?
Problem solving is the process of finding a resolution for a specific issue or conflict. There are many possible solutions for solving a problem, which is why it's important to go through a problem-solving process to find the best solution. You could use a flathead screwdriver to unscrew a Phillips head screw, but there is a better tool for the situation. Utilizing common problem-solving techniques helps you find the best solution to fit the needs of the specific situation, much like using the right tools.
4 steps to better problem solving
While it might be tempting to dive into a problem head first, take the time to move step by step. Here’s how you can effectively break down the problem-solving process with your team:
1. Identify the problem that needs to be solved
One of the easiest ways to identify a problem is to ask questions. A good place to start is to ask journalistic questions, like:
Who : Who is involved with this problem? Who caused the problem? Who is most affected by this issue?
What: What is happening? What is the extent of the issue? What does this problem prevent from moving forward?
Where: Where did this problem take place? Does this problem affect anything else in the immediate area?
When: When did this problem happen? When does this problem take effect? Is this an urgent issue that needs to be solved within a certain timeframe?
Why: Why is it happening? Why does it impact workflows?
How: How did this problem occur? How is it affecting workflows and team members from being productive?
Asking journalistic questions can help you define a strong problem statement so you can highlight the current situation objectively, and create a plan around that situation.
Here’s an example of how a design team uses journalistic questions to identify their problem:
Overarching problem: Design requests are being missed
Who: Design team, digital marketing team, web development team
What: Design requests are forgotten, lost, or being created ad hoc.
Where: Email requests, design request spreadsheet
When: Missed requests on January 20th, January 31st, February 4th, February 6th
How : Email request was lost in inbox and the intake spreadsheet was not updated correctly. The digital marketing team had to delay launching ads for a few days while design requests were bottlenecked. Designers had to work extra hours to ensure all requests were completed.
In this example, there are many different aspects of this problem that can be solved. Using journalistic questions can help you identify different issues and who you should involve in the process.
2. Brainstorm multiple solutions
If at all possible, bring in a facilitator who doesn't have a major stake in the solution. Bringing an individual who has little-to-no stake in the matter can help keep your team on track and encourage good problem-solving skills.
Here are a few brainstorming techniques to encourage creative thinking:
Brainstorm alone before hand: Before you come together as a group, provide some context to your team on what exactly the issue is that you're brainstorming. This will give time for you and your teammates to have some ideas ready by the time you meet.
Say yes to everything (at first): When you first start brainstorming, don't say no to any ideas just yet—try to get as many ideas down as possible. Having as many ideas as possible ensures that you’ll get a variety of solutions. Save the trimming for the next step of the strategy.
Talk to team members one-on-one: Some people may be less comfortable sharing their ideas in a group setting. Discuss the issue with team members individually and encourage them to share their opinions without restrictions—you might find some more detailed insights than originally anticipated.
Break out of your routine: If you're used to brainstorming in a conference room or over Zoom calls, do something a little different! Take your brainstorming meeting to a coffee shop or have your Zoom call while you're taking a walk. Getting out of your routine can force your brain out of its usual rut and increase critical thinking.
3. Define the solution
After you brainstorm with team members to get their unique perspectives on a scenario, it's time to look at the different strategies and decide which option is the best solution for the problem at hand. When defining the solution, consider these main two questions: What is the desired outcome of this solution and who stands to benefit from this solution?
Set a deadline for when this decision needs to be made and update stakeholders accordingly. Sometimes there's too many people who need to make a decision. Use your best judgement based on the limitations provided to do great things fast.
4. Implement the solution
To implement your solution, start by working with the individuals who are as closest to the problem. This can help those most affected by the problem get unblocked. Then move farther out to those who are less affected, and so on and so forth. Some solutions are simple enough that you don’t need to work through multiple teams.
After you prioritize implementation with the right teams, assign out the ongoing work that needs to be completed by the rest of the team. This can prevent people from becoming overburdened during the implementation plan . Once your solution is in place, schedule check-ins to see how the solution is working and course-correct if necessary.
Decision-making tools for agile businesses
In this ebook, learn how to equip employees to make better decisions—so your business can pivot, adapt, and tackle challenges more effectively than your competition.
Implement common problem-solving strategies
There are a few ways to go about identifying problems (and solutions). Here are some strategies you can try, as well as common ways to apply them:
Trial and error
Trial and error problem solving doesn't usually require a whole team of people to solve. To use trial and error problem solving, identify the cause of the problem, and then rapidly test possible solutions to see if anything changes.
This problem-solving method is often used in tech support teams through troubleshooting.
The 5 whys problem-solving method helps get to the root cause of an issue. You start by asking once, “Why did this issue happen?” After answering the first why, ask again, “Why did that happen?” You'll do this five times until you can attribute the problem to a root cause.
This technique can help you dig in and find the human error that caused something to go wrong. More importantly, it also helps you and your team develop an actionable plan so that you can prevent the issue from happening again.
Here’s an example:
Problem: The email marketing campaign was accidentally sent to the wrong audience.
“Why did this happen?” Because the audience name was not updated in our email platform.
“Why were the audience names not changed?” Because the audience segment was not renamed after editing.
“Why was the audience segment not renamed?” Because everybody has an individual way of creating an audience segment.
“Why does everybody have an individual way of creating an audience segment?” Because there is no standardized process for creating audience segments.
“Why is there no standardized process for creating audience segments?” Because the team hasn't decided on a way to standardize the process as the team introduced new members.
In this example, we can see a few areas that could be optimized to prevent this mistake from happening again. When working through these questions, make sure that everyone who was involved in the situation is present so that you can co-create next steps to avoid the same problem.
A SWOT analysis
A SWOT analysis can help you highlight the strengths and weaknesses of a specific solution. SWOT stands for:
Strength: Why is this specific solution a good fit for this problem?
Weaknesses: What are the weak points of this solution? Is there anything that you can do to strengthen those weaknesses?
Opportunities: What other benefits could arise from implementing this solution?
Threats: Is there anything about this decision that can detrimentally impact your team?
As you identify specific solutions, you can highlight the different strengths, weaknesses, opportunities, and threats of each solution.
This particular problem-solving strategy is good to use when you're narrowing down the answers and need to compare and contrast the differences between different solutions.
Even more successful problem solving
After you’ve worked through a tough problem, don't forget to celebrate how far you've come. Not only is this important for your team of problem solvers to see their work in action, but this can also help you become a more efficient, effective , and flexible team. The more problems you tackle together, the more you’ll achieve.
Looking for a tool to help solve problems on your team? Track project implementation with a work management tool like Asana .
Related resources
110+ icebreaker questions for team building
How Asana’s digital team used work management to refresh our brand
How to streamline compliance management software with Asana
How to build your critical thinking skills in 7 steps (with examples)
IDEAL Problem Solver by Bransford & Stein: Notes
- Table of Contents
- Teaching Thinking and Problem Solving
VM: I had to inter-library loan this item to read the original content. This is highly cited throughout literature, so I wanted to have a good grasp on what it covered. Here are my notes and commentary:
- Full text From TNtech.edu: "Ideal Problem Solver, 2 ed." (c) 1984, 1993 more... less... Thanks to Center for Assessment & Improvement of Learning - Reports & Publications"
- Full text from ERIC: The IDEAL Workplace: Strategies for Improving Learning, Problem Solving, and Creativity
- Show your support: The Ideal Problem Solver: A Guide to Improving Thinking, Learning, and Creativity Second Edition
The reason you should learn the IDEAL method is so you don't need to avoid problems. The more know about and practice problem solving, the easier it gets. It is learnable skill. It also prompts you to look for problems and solutions instead of just doing things the same old way.
Improvement of problem solving skills.
Model for analyzing the processes that underlie effective problem solving.
IDEAL Model for improving problem solving (Verbatim copy of Fig 2.1; p.12)
I = Identifying the problem.
D = Define and represent the problem.
E = Explore possible strategies.
A = Act on the strategies.
L = Look back and evaluate the effects of your activities.
ELABORATION:
I = Identifying that there is a problem that, once described as a problem, may be solved or improved.
D = Define and represent the problem. Draw it instead of trying to imagine it.
E = Explore possible strategies & alternative approaches or viewpoints.
General strategies: Break problem down into small simple problems. Working a problem backwards. Build scale model Try simulation experiment, with smaller or simpler sets.
A = Act on the strategies. Try, then reflect or recall. Actively try learning strategy.
L = Look back and evaluate the effects of your activities. Look at results of learning strategy used: Does it work to allow full recall?
"Many students make the mistake of assuming that they have "learned" adequately if the information seems to make sense as they read it in a textbook or hear it in a lecture." (p. 23" Must use or practice, recall, or paraphrase - in order to evaluate effectiveness of learning.
Math: Do example problems before looking at solution to practice concepts. Look at solution to see where you went wrong (or not).
Don't let the test be the first time you evaluate your understanding of material
Problem identification and definition.
Proof of concept - act/look/evaluate.
To find an answer to a problem, you can dig deeper, or dig somewhere else.
Question assumptions about limits The old - think outside the box- strategy.
When memorizing, know what you need to remember Definitions? Concepts? Graphs? Dates? each teacher has different priorities...ask them what to focus on
Ways to solve problem of learning new information.
Techniques for improving memory.
Short term meomory
Long term memory
Remembering people's names
Studying for an essay test.
Using cues to retrieve information. For example, you can remember IDEAL first and that will help you reconstruct the idea of how to solve problems.
Some strategies for remembering information:
Make a story full of memorable images.
Funny obnoxious "vivid images" or "mental pictures" are more memorabl e. (Ex: random words in a list, passwords, people's names. Banana vomit haunts me.)
Rehearse over and over - over learn. (Ex: Memorizing a phone number 867-5309 )
Rehearse words in groups - chunking. (Ex: Memorizing a part in a play, poems, pledges, short stories.)
Organize words into conceptual categories - Look for unifying relationships. (Recall, order not important. Ex: Shopping list, points in an essay.)
Look for similarities and coincidences in the words themselves. (Ex: How many words have e's, or 2 syllables, or have pun-ishing homonyms)
The feet that use the manual transmission car pedals are, from left to right: C ( L eft-foot) utch , the B( R ight-foot) ake , and the A ccelerato ( R ight-foot)
Does order mimic alphabetical order? The manual transmission car pedals are, from left to right, the C lutch, the B rake, and the A ccelerator )
Use Acronyms I dentify D efine E xplore A ct L ook
Acronym- easily remembered word: FACE
Acrostic- easily remembered phrase: E very G ood B oy D eserves F udge
- Modified image source: Commons.wikimedia.org
Don't waste time studying what you already know
Image - Name Strategy:
What is unique about the person? What is unique about their name?
Find a relationship between the two.
Other Pairing Strategies:
method of loci: arranging words to be remembered in association with familiar location or path .
Peg-word method: arranging words to be remembered in association with number order or alphabet letter order .
Strategies to comprehend new information.
more difficult than
Strategies to memorize new information.
Learning with understanding - comprehending new information.
Knowledge of CORE CONCEPTS in a field SIMPLIFIES problem solving.
Ways to approach a problem of learning information that seems to be arbitrary:
Over-learn: rehearse the facts until they are mastered. 2+2=4
Find relationships between images or words that are memorable: story telling, silmilarieties, vivid images, pegging, etc.
When a concept seems unclear, learn more about it.
Memory- can be of seemingly arbitrary words or numbers: ROTE (Ex. Facts and relationships) appearance
Comprehension - is understanding significance or relationships or function
Novices often forced to memorize information until they learn enough (related concepts and context) to understand it.
The mere memorization of information rarely provides useful conceptual tools that enable one to solve new problems later on. (p. 61,69)
Taking notes will not necessarily lead to effective recall prompts. How do you know when you understand material? Self-test by trying to explain material to another person.That will expose gaps in understanding.
Recall answers or solve problems out of order to be sure you know which concepts to apply and why.
Look at mistakes made as soon as possible, and learn where you went wrong.
Uses of information require more or less precision in understanding, depending on context. (A pilot must know more about an airplane than a passenger.)
Evaluation basics: evaluate factual claims look for flaws in logic question assumptions that form the basis of the argument
Correlation does not necessarily prove cause and effect.
Importance of being able to criticize ideas and generate alternatives.
Strategies for effective criticism.
Strategies for formulating creative solutions.
Finding/understanding implicit assumptions that hamper brainstorming.
Strategies for making implicit assumptions explicit.
"The uncreative mind can spot wrong answers, but it takes a creative mnd to spot wrong questions ." Emphasis added. - Anthony Jay, (p.93)
Making implicit assumptions explicit: look for inconsistencies question assumptions make predictions analyze worst case get feedback & criticism from others
Increase generation of novel ideas: break down problem into smaller parts analyze properties on a simpler level use analogies use brainstorming give it a rest, sleep on it don't be in a hurry, let ideas incubate: talk to others, read, keep the problem in the back of your mind try to communicate your ideas as clearly as possible, preferably in writing. attempting to write or teach an idea can function as a discovery technique
Strategies for Effective Communication
What we are trying to accomplish (goal)
Evaluating communication fro effectiveness:
Identify and Define: Have you given audience basis to understand different points of view about a topic? Different problem definitions can lead to different solutions. Did you Explore pros and cons of different strategies? Did you take Action and then Look at consequences? Did you organize your content into main points that are easy to identify and remeber?
Did you use analogies and background information to put facts into context?
Did you make sure your facts were accurate and did you avoid making assumptions?Always check for logical fallacies and inconsistencies. Did you include information that is novel and useful, instead of just regurgitating what everyone already knows?
After you communicate, get feedback and evaluate your strategies. Look for effects, and learn from your mistakes. (p. 117)
Identify and Define what (problem) you want to communicate, with respect to your audience and your goals. Explore strategies for communicating your ideas.Act - based on your strategies. Look at effects.
Summaries of Useful Attitudes and Strategies: Anybody can use the IDEAL system to improve their problem solving skills.
Related Resources:
- Teaching The IDEAL Problem-Solving Method To Diverse Learners Written by: Amy Sippl
- Next: eBook >>
- Last Updated: Nov 29, 2023 2:43 PM
- URL: https://library.fvtc.edu/IDEAL
About Us • Contact Us • FVTC Terms of Service • Sitemap FVTC Mission, Vision, Values & Purposes • FVTC Privacy Statement • FVTC Library Services Accessibility Statement DISCLAIMER: Any commercial mentions on our website are for instructional purposes only. Our guides are not a substitute for professional legal or medical advice. Fox Valley Technical College • Library Services • 1825 N. Bluemound Drive • Room G113 Appleton, WI 54912-2277 • United States • (920) 735-5653 © 2024 • Fox Valley Technical College • All Rights Reserved.
The https://library.fvtc.edu/ pages are hosted by SpringShare. Springshare Privacy Policy.
COMMENTS
The IDEAL Problem-Solving Method is one option to teach diverse learners to better approach difficult situations. IDEAL Problem-Solving Method. In 1984, Bransford and Stein published one of the most popular and well-regarded problem-solving methods. It's used both in industry and in education to help various learners establish a problem ...
The ideal problem-solving model is a structured approach that provides a systematic way to address complex issues by identifying the problem, generating potential solutions, evaluating those solutions, and implementing the most effective one. This model emphasizes critical thinking and analytical skills, helping leaders to navigate challenges and make informed decisions.
Knowledge of CORE CONCEPTS in a field SIMPLIFIES problem solving. Ways to approach a problem of learning information that seems to be arbitrary: Over-learn: rehearse the facts until they are mastered. 2+2=4. Find relationships between images or words that are memorable: story telling, silmilarieties, vivid images, pegging, etc.
Have you ever struggled with making a decision? The IDEAL method is tool to help you look at a situation objectively, identify the problem, explore possible solutions, and evaluate their effectiveness. Use IDEAL in your work or personal life to reduce the emotion in decision making and focus on action!
Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...
Here are the seven steps of the rational approach: Define the problem. Identify possible causes. Brainstorm options to solve the problem. Select an option. Create an implementation plan. Execute the plan and monitor the results. Evaluate the solution. Read more:Effective Problem Solving Steps in the Workplace.
The IDEAL Approach to Problem Solving 19 Failure to Identify the Possibility of Future Problems 22 ... Some have shown us how they have creatively applied the IDEAL frame work to problems such as enhancing their professional growth, improv-- Preface ing their grades, and interacting with their children. They have used
Abstract. The paper aims to introduce the conceptual framework of problem solving through values. The framework consists of problem analysis, selection of value (s) as a background for the solution, the search for alternative ways of the solution, and the rationale for the solution. This framework reveals when, how, and why is important to ...
Problem Solving Strategies. IDEAL. Identify the problem. D Define and represent the problem. E Explore possible strategies or solutions. selected strategy or solutionL Look back and evaluateTrial and error: A strategy that involve attempting dif. rent solutions and eliminating those that do not work.Algorithms: A strategy that involves ...
Step 1 - Define the Problem. The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause.
The best way to solve a problem or achieve a goal is to find people who have actually solved that problem or achieved that goal. Start from the end, the solution or achievement, and then work ...
Make students articulate their problem solving process. In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".
In insight problem-solving, the cognitive processes that help you solve a problem happen outside your conscious awareness. 4. Working backward. Working backward is a problem-solving approach often ...
Solution evaluation. 1. Problem identification. The first stage of any problem solving process is to identify the problem (s) you need to solve. This often looks like using group discussions and activities to help a group surface and effectively articulate the challenges they're facing and wish to resolve.
How to Solve Problems. To bring the best ideas forward, teams must build psychological safety. Teams today aren't just asked to execute tasks: They're called upon to solve problems. You'd ...
The problem solving process typically includes: Pinpointing what's broken by gathering data and consulting with team members. Figuring out why it's not working by mapping out and troubleshooting the problem. Deciding on the most effective way to fix it by brainstorming and then implementing a solution. While skills like active listening ...
Here is a six-step process to follow when using a problem-solving model: 1. Define the problem. First, determine the problem that your team needs to solve. During this step, teams may encourage open and honest communication so everyone feels comfortable sharing their thoughts and concerns.
4 steps to better problem solving. While it might be tempting to dive into a problem head first, take the time to move step by step. Here's how you can effectively break down the problem-solving process with your team: 1. Identify the problem that needs to be solved. One of the easiest ways to identify a problem is to ask questions.
Here are the basic steps involved in how professionals address their problems: 1. Define the problem. The first step is to analyze the situation carefully to learn more about the problem. A single situation may solve multiple problems. Identify each problem and determine its cause.
Knowledge of CORE CONCEPTS in a field SIMPLIFIES problem solving. Ways to approach a problem of learning information that seems to be arbitrary: Over-learn: rehearse the facts until they are mastered. 2+2=4. Find relationships between images or words that are memorable: story telling, silmilarieties, vivid images, pegging, etc.
PEL-083 A PELP Problem-Solving Approach . 2 . Teams rarely move through each step sequentially, and might get stuck and revisit earlier steps throughout the process. However, each step is critical to improving system-wide performance. Steps . Identify the Problem. The first and most critical step of solving a performance problem is to