• Thesis Action Plan New
  • Academic Project Planner

Literature Navigator

Thesis dialogue blueprint, writing wizard's template, research proposal compass.

  • See Success Stories
  • Access Free Resources
  • Why we are different
  • All Products
  • Coming Soon

How to Formulate a Hypothesis: Example and Explanation

Scientist writing hypothesis on transparent board with equations

A hypothesis is a smart guess about how things work. It helps scientists figure out what they think will happen in their experiments. Making a good hypothesis is important because it guides the research and helps find answers to questions. In this article, we will learn how to make a strong hypothesis, look at some examples, and understand why they matter.

Key Takeaways

  • A hypothesis is an educated guess that can be tested through experiments.
  • Good hypotheses are clear, precise, and can be proven wrong.
  • There are different types of hypotheses, like simple, complex, null, and alternative.
  • Variables play a big role in forming a hypothesis, including independent, dependent, and control variables.
  • Testing and refining hypotheses are crucial steps in scientific research.

Understanding the Concept of a Hypothesis

Definition and importance.

A hypothesis is an idea you can test. It's a clear statement predicting the outcome of your study. It's not just a guess ; it should be based on what you already know. A good hypothesis helps you focus your research and guides your experiments.

Role in Scientific Research

In science, a hypothesis is very important. It gives you a starting point for your experiments. You can test it to see if it's true or false. This helps you understand more about the world. A clear, testable hypothesis is key to good research .

Common Misconceptions

Many people think a hypothesis is just a wild guess. This is not true. A hypothesis is based on existing knowledge and theories. Another common mistake is making the hypothesis too broad. A good hypothesis should be specific and testable.

Steps to Formulate a Hypothesis

Formulating a hypothesis is a critical step in the scientific method. It involves several key stages that help ensure your hypothesis is both testable and relevant to your research question. Here are the steps you should follow:

Gathering Observations

Start by collecting as many observations about your topic or problem as possible. These observations will form the foundation of your hypothesis. Good clinical research starts from a plausible hypothesis supported by contemporary scientific knowledge. Look for patterns or trends in the data that might suggest a possible explanation.

Identifying Variables

Next, identify the variables involved in your study. Variables are the elements that you will measure or manipulate in your research. There are typically three types of variables: independent, dependent, and control variables. Understanding these will help you design a more effective experiment.

Developing Possible Explanations

Once you have gathered your observations and identified your variables, the next step is to develop possible explanations for the patterns you have observed. This is where you start to formulate your hypothesis. Think of ways to confirm or disprove each possible explanation through experimentation. This process is known as falsifiability and is crucial for a robust hypothesis.

Characteristics of a Good Hypothesis

Testability and falsifiability.

A good hypothesis must be testable, meaning you can design an experiment to check if it's true or false. Testability is crucial because it allows you to gather evidence to support or refute your hypothesis. Additionally, a hypothesis should be falsifiable, which means there should be a possible outcome that can prove it wrong. This aligns with the falsification principle proposed by Karl Popper, which is fundamental in scientific research.

Clarity and Precision

Your hypothesis should be clear and precise, avoiding any vague language. This clarity helps in demystifying the concept of a thesis statement . A well-defined hypothesis makes it easier to design experiments and interpret results. For example, instead of saying "Plants grow better with more light," you could say, "If plants receive 8 hours of sunlight daily, then they will grow taller than plants that receive 4 hours of sunlight daily."

Relevance to Research Question

A good hypothesis should be directly related to your research question. It should provide a clear direction for your study and help you focus on specific variables. This relevance ensures that your hypothesis is not just a random guess but is grounded in existing knowledge and observations. Hypotheses have strong, arguably foundational, utility as a tool of science . They support the falsification principle, proposed by Karl Popper as fundamental in scientific research.

Types of Hypotheses in Research

When conducting research, it's crucial to understand the different types of hypotheses you might encounter. Each type serves a unique purpose and helps guide your study in specific ways. Knowing these types can enhance the clarity and focus of your research proposal .

Examples of Hypotheses

Simple hypothesis examples.

A simple hypothesis suggests a relationship between two variables: one independent and one dependent. For instance, "If students sleep for at least 8 hours, then their test scores will improve." This type of hypothesis is straightforward and easy to test.

Complex Hypothesis Examples

A complex hypothesis involves more than two variables. An example could be, "If students sleep for at least 8 hours and eat a healthy breakfast, then their test scores and overall well-being will improve." This type of hypothesis examines multiple factors and their combined effects.

Null and Alternative Hypothesis Examples

The null hypothesis states that there is no relationship between the variables. For example, "There is no difference in test scores between students who sleep for 8 hours and those who do not." The alternative hypothesis, on the other hand, suggests a relationship: "Students who sleep for 8 hours will have better test scores than those who do not."

Understanding these examples helps clarify how to structure your own hypotheses. Whether simple or complex, each type plays a crucial role in scientific research.

The Role of Variables in Hypothesis Formulation

When formulating a hypothesis, understanding the role of variables is crucial. Variables are the elements that you measure or manipulate in your research . They help you establish relationships and test your predictions effectively.

Testing Your Hypothesis

Designing experiments.

Designing an experiment is a crucial step in testing your hypothesis. A well-designed experiment ensures that you can accurately test your hypothesis and obtain reliable results. Start by defining your independent and dependent variables clearly. Make sure to control other factors that might influence the outcome. This is essential for maintaining the integrity of your experiment. You should also consider the ethical implications of your experiment to ensure it adheres to accepted standards.

Data Collection Methods

Once your experiment is designed, the next step is to collect data. Choose data collection methods that are appropriate for your research question and hypothesis. Common methods include surveys, observations, and experiments. Ensure that your data collection process is systematic and consistent to avoid any biases. Remember, the goal is to gather data that will either support or refute your hypothesis.

Analyzing Results

After collecting your data, the next step is to analyze the results. Use statistical methods to determine whether your data supports your hypothesis. This involves calculating the likelihood that your results are due to chance. If your data does not support your hypothesis, don't be discouraged. Unexpected findings can lead to new questions and further research. Always be open to conducting further experiments to validate and understand your findings.

Common Pitfalls in Hypothesis Formulation

When formulating a hypothesis, it's crucial to avoid common mistakes that can undermine your research. Here are some pitfalls to watch out for:

Overly Broad Hypotheses

One of the most frequent errors is creating a hypothesis that is too broad. A broad hypothesis can be difficult to test and may not provide meaningful results. Narrowing down your hypothesis to a specific aspect of your research question can make it more manageable and testable.

Lack of Testability

A hypothesis must be testable to be valid. If you can't design an experiment to test your hypothesis, it's not useful. Ensure that your hypothesis includes variables that can be measured and tested. This is essential for revolutionizing research: the secrets of effective experimental design .

Ignoring Alternative Explanations

Another common mistake is failing to consider other possible explanations for your observations. When you ignore alternative explanations, you risk missing out on important insights. Always evaluate assumptions, revise methodology, and consider alternative explanations to strengthen your hypothesis.

By being aware of these pitfalls, you can create a more robust and reliable hypothesis for your research.

Refining and Revising Hypotheses

When you conduct research, it’s common to find that your initial hypothesis may not hold true. This is a normal part of the scientific process. If your results do not support your original hypothesis, consider suggesting alternative options for future studies. This can help guide further research and improve understanding of the topic.

To ensure your hypothesis is strong, you can use a checklist to identify any weaknesses. Here are some questions to consider:

  • Is the hypothesis clear and specific?
  • Can it be tested through experiments?
  • Does it relate to the research question?

By answering these questions, you can refine your hypothesis and make it more robust. Additionally, incorporating feedback from peers can provide new insights and help you adjust your hypothesis based on new data.

In summary, refining and revising your hypothesis is essential for advancing your research. It allows you to adapt to new findings and improve the clarity and focus of your work. Remember, the goal is to develop a hypothesis that can lead to meaningful conclusions and further exploration in your field.

In the context of educational research, a recent meta-analysis highlights the importance of understanding the relationship between psychological needs and student well-being. This shows how refining hypotheses can lead to better insights into complex issues. Similarly, a grounded theory study emphasizes the need for thorough reviews to identify key issues in research, which can also inform hypothesis revision.

Case Studies of Hypothesis Formulation

One of the most famous historical examples of hypothesis formulation is Gregor Mendel's work on pea plants. Mendel's hypothesis about inheritance patterns laid the groundwork for modern genetics. He observed the traits of pea plants and formulated hypotheses about how these traits were passed down through generations. His work is a classic example of how careful observation and hypothesis testing can lead to significant scientific breakthroughs.

In contemporary research, hypothesis formulation continues to play a crucial role. For instance, in the field of psychology, researchers often develop hypotheses to understand human behavior. A recent study on the effects of social media on mental health formulated the hypothesis that increased social media use leads to higher levels of anxiety and depression. This hypothesis was tested through surveys and data analysis, providing valuable insights into the relationship between social media and mental health.

From both historical and contemporary examples, several lessons can be learned about effective hypothesis formulation:

  • Observation is key : Careful observation of phenomena is the first step in formulating a hypothesis.
  • Clarity and precision : A good hypothesis should be clear and precise, making it easier to test.
  • Testability: Ensure that your hypothesis can be tested through experiments or data analysis.
  • Flexibility: Be prepared to revise your hypothesis based on new data or feedback.

By understanding these lessons, you can improve your own hypothesis formulation process and contribute to the advancement of scientific knowledge.

In our "Case Studies of Hypothesis Formulation" section, we dive into real-world examples that show how to create strong hypotheses. These case studies are designed to help you understand the process and apply it to your own work. If you're looking for more detailed guidance, visit our website for step-by-step instructions and special offers. Don't miss out on the chance to improve your research skills!

Formulating a hypothesis is a fundamental step in the scientific method that helps guide research and experimentation. By gathering observations, evaluating potential causes, and developing testable statements, researchers can create hypotheses that are both meaningful and falsifiable. This process not only aids in understanding the problem at hand but also in predicting outcomes and drawing conclusions based on empirical evidence. Remember, a well-crafted hypothesis is clear, concise, and provides a direction for future research. With practice and careful consideration, anyone can learn to formulate effective hypotheses that contribute to scientific knowledge.

Frequently Asked Questions

What is a hypothesis.

A hypothesis is an educated guess about how things work. It's a statement that can be tested to see if it's true or false.

Why is a hypothesis important in scientific research?

A hypothesis helps guide your experiments and research. It gives you a clear focus and helps you understand what you're trying to find out.

What are the steps to formulate a good hypothesis?

To create a good hypothesis, start by gathering observations, look for patterns, and identify variables. Then, come up with possible explanations that you can test.

What makes a hypothesis testable?

A testable hypothesis is one that you can prove or disprove through experiments or observations. It should be clear and specific.

Can a hypothesis be proven true?

A hypothesis can be supported by evidence, but it can't be proven true beyond all doubt. New evidence might change our understanding.

What are independent and dependent variables?

Independent variables are the ones you change in an experiment. Dependent variables are the ones you measure to see if they change because of the independent variable.

What is a null hypothesis?

A null hypothesis states that there is no relationship between the variables being studied. It's often used as a starting point for testing.

How can I avoid common pitfalls in hypothesis formulation?

To avoid problems, make sure your hypothesis is specific, testable, and based on observations. Avoid making it too broad or ignoring other possible explanations.

Student using laptop for dissertation writing tools

Discovering Statistics Using IBM SPSS Statistics: A Fun and Informative Guide

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Unlocking the Power of Data: A Review of 'Essentials of Modern Business Statistics with Microsoft Excel'

Discovering Statistics Using SAS: A Comprehensive Review

Discovering Statistics Using SAS: A Comprehensive Review

Language Lifesavers: 5 Tips to Ace Your Thesis in a Second Language

Language Lifesavers: 5 Tips to Ace Your Thesis in a Second Language

Diverse students discussing thesis and hypothesis concepts.

Thesis vs. Hypothesis: Do You Know the Crucial Difference?

The Thesis Survival Kit: Essential Tools and Resources for a Successful Journey

The Thesis Survival Kit: Essential Tools and Resources for a Successful Journey

Thesis Action Plan

Thesis Action Plan

Research Proposal Compass

  • Rebels Blog
  • Blog Articles
  • Affiliate Program
  • Terms and Conditions
  • Payment and Shipping Terms
  • Privacy Policy
  • Return Policy

© 2024 Research Rebels, All rights reserved.

Your cart is currently empty.

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

5.2 - writing hypotheses.

The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis (\(H_0\)) and an alternative hypothesis (\(H_a\)).

When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the direction of the test (non-directional, right-tailed or left-tailed), and (3) the value of the hypothesized parameter.

  • At this point we can write hypotheses for a single mean (\(\mu\)), paired means(\(\mu_d\)), a single proportion (\(p\)), the difference between two independent means (\(\mu_1-\mu_2\)), the difference between two proportions (\(p_1-p_2\)), a simple linear regression slope (\(\beta\)), and a correlation (\(\rho\)). 
  • The research question will give us the information necessary to determine if the test is two-tailed (e.g., "different from," "not equal to"), right-tailed (e.g., "greater than," "more than"), or left-tailed (e.g., "less than," "fewer than").
  • The research question will also give us the hypothesized parameter value. This is the number that goes in the hypothesis statements (i.e., \(\mu_0\) and \(p_0\)). For the difference between two groups, regression, and correlation, this value is typically 0.

Hypotheses are always written in terms of population parameters (e.g., \(p\) and \(\mu\)).  The tables below display all of the possible hypotheses for the parameters that we have learned thus far. Note that the null hypothesis always includes the equality (i.e., =).

One Group Mean
Research Question Is the population mean different from \( \mu_{0} \)? Is the population mean greater than \(\mu_{0}\)? Is the population mean less than \(\mu_{0}\)?
Null Hypothesis, \(H_{0}\) \(\mu=\mu_{0} \) \(\mu=\mu_{0} \) \(\mu=\mu_{0} \)
Alternative Hypothesis, \(H_{a}\) \(\mu\neq \mu_{0} \) \(\mu> \mu_{0} \) \(\mu<\mu_{0} \)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional
Paired Means
Research Question Is there a difference in the population? Is there a mean increase in the population? Is there a mean decrease in the population?
Null Hypothesis, \(H_{0}\) \(\mu_d=0 \) \(\mu_d =0 \) \(\mu_d=0 \)
Alternative Hypothesis, \(H_{a}\) \(\mu_d \neq 0 \) \(\mu_d> 0 \) \(\mu_d<0 \)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional
One Group Proportion
Research Question Is the population proportion different from \(p_0\)? Is the population proportion greater than \(p_0\)? Is the population proportion less than \(p_0\)?
Null Hypothesis, \(H_{0}\) \(p=p_0\) \(p= p_0\) \(p= p_0\)
Alternative Hypothesis, \(H_{a}\) \(p\neq p_0\) \(p> p_0\) \(p< p_0\)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional
Difference between Two Independent Means
Research Question Are the population means different? Is the population mean in group 1 greater than the population mean in group 2? Is the population mean in group 1 less than the population mean in groups 2?
Null Hypothesis, \(H_{0}\) \(\mu_1=\mu_2\) \(\mu_1 = \mu_2 \) \(\mu_1 = \mu_2 \)
Alternative Hypothesis, \(H_{a}\) \(\mu_1 \ne \mu_2 \) \(\mu_1 \gt \mu_2 \) \(\mu_1 \lt \mu_2\)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional
Difference between Two Proportions
Research Question Are the population proportions different? Is the population proportion in group 1 greater than the population proportion in groups 2? Is the population proportion in group 1 less than the population proportion in group 2?
Null Hypothesis, \(H_{0}\) \(p_1 = p_2 \) \(p_1 = p_2 \) \(p_1 = p_2 \)
Alternative Hypothesis, \(H_{a}\) \(p_1 \ne p_2\) \(p_1 \gt p_2 \) \(p_1 \lt p_2\)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional
Simple Linear Regression: Slope
Research Question Is the slope in the population different from 0? Is the slope in the population positive? Is the slope in the population negative?
Null Hypothesis, \(H_{0}\) \(\beta =0\) \(\beta= 0\) \(\beta = 0\)
Alternative Hypothesis, \(H_{a}\) \(\beta\neq 0\) \(\beta> 0\) \(\beta< 0\)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional
Correlation (Pearson's )
Research Question Is the correlation in the population different from 0? Is the correlation in the population positive? Is the correlation in the population negative?
Null Hypothesis, \(H_{0}\) \(\rho=0\) \(\rho= 0\) \(\rho = 0\)
Alternative Hypothesis, \(H_{a}\) \(\rho \neq 0\) \(\rho > 0\) \(\rho< 0\)
Type of Hypothesis Test Two-tailed, non-directional Right-tailed, directional Left-tailed, directional
  • How it works

researchprospect post subheader

How to Write a Hypothesis – Steps & Tips

Published by Alaxendra Bets at August 14th, 2021 , Revised On October 26, 2023

What is a Research Hypothesis?

You can test a research statement with the help of experimental or theoretical research, known as a hypothesis.

If you want to find out the similarities, differences, and relationships between variables, you must write a testable hypothesis before compiling the data, performing analysis, and generating results to complete.

The data analysis and findings will help you test the hypothesis and see whether it is true or false. Here is all you need to know about how to write a hypothesis for a  dissertation .

Research Hypothesis Definition

Not sure what the meaning of the research hypothesis is?

A research hypothesis predicts an answer to the research question  based on existing theoretical knowledge or experimental data.

Some studies may have multiple hypothesis statements depending on the research question(s).  A research hypothesis must be based on formulas, facts, and theories. It should be testable by data analysis, observations, experiments, or other scientific methodologies that can refute or support the statement.

Variables in Hypothesis

Developing a hypothesis is easy. Most research studies have two or more variables in the hypothesis, particularly studies involving correlational and experimental research. The researcher can control or change the independent variable(s) while measuring and observing the independent variable(s).

“How long a student sleeps affects test scores.”

In the above statement, the dependent variable is the test score, while the independent variable is the length of time spent in sleep. Developing a hypothesis will be easy if you know your research’s dependent and independent variables.

Once you have developed a thesis statement, questions such as how to write a hypothesis for the dissertation and how to test a research hypothesis become pretty straightforward.

Looking for dissertation help?

Researchprospect to the rescue then.

We have expert writers on our team who are skilled at helping students with quantitative dissertations across a variety of STEM disciplines. Guaranteeing 100% satisfaction!

dissertation help

Step-by-Step Guide on How to Write a Hypothesis

Here are the steps involved in how to write a hypothesis for a dissertation.

Step 1: Start with a Research Question

  • Begin by asking a specific question about a topic of interest.
  • This question should be clear, concise, and researchable.

Example: Does exposure to sunlight affect plant growth?

Step 2: Do Preliminary Research

  • Before formulating a hypothesis, conduct background research to understand existing knowledge on the topic.
  • Familiarise yourself with prior studies, theories, or observations related to the research question.

Step 3: Define Variables

  • Independent Variable (IV): The factor that you change or manipulate in an experiment.
  • Dependent Variable (DV): The factor that you measure.

Example: IV: Amount of sunlight exposure (e.g., 2 hours/day, 4 hours/day, 8 hours/day) DV: Plant growth (e.g., height in centimetres)

Step 4: Formulate the Hypothesis

  • A hypothesis is a statement that predicts the relationship between variables.
  • It is often written as an “if-then” statement.

Example: If plants receive more sunlight, then they will grow taller.

Step 5: Ensure it is Testable

A good hypothesis is empirically testable. This means you should be able to design an experiment or observation to test its validity.

Example: You can set up an experiment where plants are exposed to varying amounts of sunlight and then measure their growth over a period of time.

Step 6: Consider Potential Confounding Variables

  • Confounding variables are factors other than the independent variable that might affect the outcome.
  • It is important to identify these to ensure that they do not skew your results.

Example: Soil quality, water frequency, or type of plant can all affect growth. Consider keeping these constant in your experiment.

Step 7: Write the Null Hypothesis

  • The null hypothesis is a statement that there is no effect or no relationship between the variables.
  • It is what you aim to disprove or reject through your research.

Example: There is no difference in plant growth regardless of the amount of sunlight exposure.

Step 8: Test your Hypothesis

Design an experiment or conduct observations to test your hypothesis.

Example: Grow three sets of plants: one set exposed to 2 hours of sunlight daily, another exposed to 4 hours, and a third exposed to 8 hours. Measure and compare their growth after a set period.

Step 9: Analyse the Results

After testing, review your data to determine if it supports your hypothesis.

Step 10: Draw Conclusions

  • Based on your findings, determine whether you can accept or reject the hypothesis.
  • Remember, even if you reject your hypothesis, it’s a valuable result. It can guide future research and refine questions.

Three Ways to Phrase a Hypothesis

Try to use “if”… and “then”… to identify the variables. The independent variable should be present in the first part of the hypothesis, while the dependent variable will form the second part of the statement. Consider understanding the below research hypothesis example to create a specific, clear, and concise research hypothesis;

If an obese lady starts attending Zomba fitness classes, her health will improve.

In academic research, you can write the predicted variable relationship directly because most research studies correlate terms.

The number of Zomba fitness classes attended by the obese lady has a positive effect on health.

If your research compares two groups, then you can develop a hypothesis statement on their differences.

An obese lady who attended most Zumba fitness classes will have better health than those who attended a few.

How to Write a Null Hypothesis

If a statistical analysis is involved in your research, then you must create a null hypothesis. If you find any relationship between the variables, then the null hypothesis will be the default position that there is no relationship between them. H0 is the symbol for the null hypothesis, while the hypothesis is represented as H1. The null hypothesis will also answer your question, “How to test the research hypothesis in the dissertation.”

H0: The number of Zumba fitness classes attended by the obese lady does not affect her health.

H1: The number of Zumba fitness classes attended by obese lady positively affects health.

Also see:  Your Dissertation in Education

Hypothesis Examples

Research Question: Does the amount of sunlight a plant receives affect its growth? Hypothesis: Plants that receive more sunlight will grow taller than plants that receive less sunlight.

Research Question: Do students who eat breakfast perform better in school exams than those who don’t? Hypothesis: Students who eat a morning breakfast will score higher on school exams compared to students who skip breakfast.

Research Question: Does listening to music while studying impact a student’s ability to retain information? Hypothesis 1 (Directional): Students who listen to music while studying will retain less information than those who study in silence. Hypothesis 2 (Non-directional): There will be a difference in information retention between students who listen to music while studying and those who study in silence.

How can ResearchProspect Help?

If you are unsure about how to rest a research hypothesis in a dissertation or simply unsure about how to develop a hypothesis for your research, then you can take advantage of our dissertation services which cover every tiny aspect of a dissertation project you might need help with including but not limited to setting up a hypothesis and research questions,  help with individual chapters ,  full dissertation writing ,  statistical analysis , and much more.

Frequently Asked Questions

What are the 5 rules for writing a good hypothesis.

  • Clear Statement: State a clear relationship between variables.
  • Testable: Ensure it can be investigated and measured.
  • Specific: Avoid vague terms, be precise in predictions.
  • Falsifiable: Design to allow potential disproof.
  • Relevant: Address research question and align with existing knowledge.

What is a hypothesis in simple words?

A hypothesis is an educated guess or prediction about something that can be tested. It is a statement that suggests a possible explanation for an event or phenomenon based on prior knowledge or observation. Scientists use hypotheses as a starting point for experiments to discover if they are true or false.

What is the hypothesis and examples?

A hypothesis is a testable prediction or explanation for an observation or phenomenon. For example, if plants are given sunlight, then they will grow. In this case, the hypothesis suggests that sunlight has a positive effect on plant growth. It can be tested by experimenting with plants in varying light conditions.

What is the hypothesis in research definition?

A hypothesis in research is a clear, testable statement predicting the possible outcome of a study based on prior knowledge and observation. It serves as the foundation for conducting experiments or investigations. Researchers test the validity of the hypothesis to draw conclusions and advance knowledge in a particular field.

Why is it called a hypothesis?

The term “hypothesis” originates from the Greek word “hypothesis,” which means “base” or “foundation.” It’s used to describe a foundational statement or proposition that can be tested. In scientific contexts, it denotes a tentative explanation for a phenomenon, serving as a starting point for investigation or experimentation.

You May Also Like

Here we explore what is research problem in dissertation with research problem examples to help you understand how and when to write a research problem.

Make sure that your selected topic is intriguing, manageable, and relevant. Here are some guidelines to help understand how to find a good dissertation topic.

Penning your dissertation proposal can be a rather daunting task. Here are comprehensive guidelines on how to write a dissertation proposal.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

writing a hypothesis formula

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

Prevent plagiarism. Run a free check.

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved October 3, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

Learn How To Write A Hypothesis For Your Next Research Project!

blog image

Undoubtedly, research plays a crucial role in substantiating or refuting our assumptions. These assumptions act as potential answers to our questions. Such assumptions, also known as hypotheses, are considered key aspects of research. In this blog, we delve into the significance of hypotheses. And provide insights on how to write them effectively. So, let’s dive in and explore the art of writing hypotheses together.

Table of Contents

What is a Hypothesis?

A hypothesis is a crucial starting point in scientific research. It is an educated guess about the relationship between two or more variables. In other words, a hypothesis acts as a foundation for a researcher to build their study.

Here are some examples of well-crafted hypotheses:

  • Increased exposure to natural sunlight improves sleep quality in adults.

A positive relationship between natural sunlight exposure and sleep quality in adult individuals.

  • Playing puzzle games on a regular basis enhances problem-solving abilities in children.

Engaging in frequent puzzle gameplay leads to improved problem-solving skills in children.

  • Students and improved learning hecks.

S tudents using online  paper writing service  platforms (as a learning tool for receiving personalized feedback and guidance) will demonstrate improved writing skills. (compared to those who do not utilize such platforms).

  • The use of APA format in research papers. 

Using the  APA format  helps students stay organized when writing research papers. Organized students can focus better on their topics and, as a result, produce better quality work.

The Building Blocks of a Hypothesis

To better understand the concept of a hypothesis, let’s break it down into its basic components:

  • Variables . A hypothesis involves at least two variables. An independent variable and a dependent variable. The independent variable is the one being changed or manipulated, while the dependent variable is the one being measured or observed.
  • Relationship : A hypothesis proposes a relationship or connection between the variables. This could be a cause-and-effect relationship or a correlation between them.
  • Testability : A hypothesis should be testable and falsifiable, meaning it can be proven right or wrong through experimentation or observation.

Types of Hypotheses

When learning how to write a hypothesis, it’s essential to understand its main types. These include; alternative hypotheses and null hypotheses. In the following section, we explore both types of hypotheses with examples. 

Alternative Hypothesis (H1)

This kind of hypothesis suggests a relationship or effect between the variables. It is the main focus of the study. The researcher wants to either prove or disprove it. Many research divides this hypothesis into two subsections: 

  • Directional 

This type of H1 predicts a specific outcome. Many researchers use this hypothesis to explore the relationship between variables rather than the groups. 

  • Non-directional

You can take a guess from the name. This type of H1 does not provide a specific prediction for the research outcome. 

Here are some examples for your better understanding of how to write a hypothesis.

  • Consuming caffeine improves cognitive performance.  (This hypothesis predicts that there is a positive relationship between caffeine consumption and cognitive performance.)
  • Aerobic exercise leads to reduced blood pressure.  (This hypothesis suggests that engaging in aerobic exercise results in lower blood pressure readings.)
  • Exposure to nature reduces stress levels among employees.  (Here, the hypothesis proposes that employees exposed to natural environments will experience decreased stress levels.)
  • Listening to classical music while studying increases memory retention.  (This hypothesis speculates that studying with classical music playing in the background boosts students’ ability to retain information.)
  • Early literacy intervention improves reading skills in children.  (This hypothesis claims that providing early literacy assistance to children results in enhanced reading abilities.)
  • Time management in nursing students. ( Students who use a  nursing research paper writing service  have more time to focus on their studies and can achieve better grades in other subjects. )

Null Hypothesis (H0)

A null hypothesis assumes no relationship or effect between the variables. If the alternative hypothesis is proven to be false, the null hypothesis is considered to be true. Usually a null hypothesis shows no direct correlation between the defined variables. 

Here are some of the examples

  • The consumption of herbal tea has no effect on sleep quality.  (This hypothesis assumes that herbal tea consumption does not impact the quality of sleep.)
  • The number of hours spent playing video games is unrelated to academic performance.  (Here, the null hypothesis suggests that no relationship exists between video gameplay duration and academic achievement.)
  • Implementing flexible work schedules has no influence on employee job satisfaction.  (This hypothesis contends that providing flexible schedules does not affect how satisfied employees are with their jobs.)
  • Writing ability of a 7th grader is not affected by reading editorial example. ( There is no relationship between reading an  editorial example  and improving a 7th grader’s writing abilities.) 
  • The type of lighting in a room does not affect people’s mood.  (In this null hypothesis, there is no connection between the kind of lighting in a room and the mood of those present.)
  • The use of social media during break time does not impact productivity at work.  (This hypothesis proposes that social media usage during breaks has no effect on work productivity.)

As you learn how to write a hypothesis, remember that aiming for clarity, testability, and relevance to your research question is vital. By mastering this skill, you’re well on your way to conducting impactful scientific research. Good luck!

Importance of a Hypothesis in Research

A well-structured hypothesis is a vital part of any research project for several reasons:

  • It provides clear direction for the study by setting its focus and purpose.
  • It outlines expectations of the research, making it easier to measure results.
  • It helps identify any potential limitations in the study, allowing researchers to refine their approach.

In conclusion, a hypothesis plays a fundamental role in the research process. By understanding its concept and constructing a well-thought-out hypothesis, researchers lay the groundwork for a successful, scientifically sound investigation.

How to Write a Hypothesis?

Here are five steps that you can follow to write an effective hypothesis. 

Step 1: Identify Your Research Question

The first step in learning how to compose a hypothesis is to clearly define your research question. This question is the central focus of your study and will help you determine the direction of your hypothesis.

Step 2: Determine the Variables

When exploring how to write a hypothesis, it’s crucial to identify the variables involved in your study. You’ll need at least two variables:

  • Independent variable : The factor you manipulate or change in your experiment.
  • Dependent variable : The outcome or result you observe or measure, which is influenced by the independent variable.

Step 3: Build the Hypothetical Relationship

In understanding how to compose a hypothesis, constructing the relationship between the variables is key. Based on your research question and variables, predict the expected outcome or connection. This prediction should be specific, testable, and, if possible, expressed in the “If…then” format.

Step 4: Write the Null Hypothesis

When mastering how to write a hypothesis, it’s important to create a null hypothesis as well. The null hypothesis assumes no relationship or effect between the variables, acting as a counterpoint to your primary hypothesis.

Step 5: Review Your Hypothesis

Finally, when learning how to compose a hypothesis, it’s essential to review your hypothesis for clarity, testability, and relevance to your research question. Make any necessary adjustments to ensure it provides a solid basis for your study.

In conclusion, understanding how to write a hypothesis is crucial for conducting successful scientific research. By focusing on your research question and carefully building relationships between variables, you will lay a strong foundation for advancing research and knowledge in your field.

Hypothesis vs. Prediction: What’s the Difference?

Understanding the differences between a hypothesis and a prediction is crucial in scientific research. Often, these terms are used interchangeably, but they have distinct meanings and functions. This segment aims to clarify these differences and explain how to compose a hypothesis correctly, helping you improve the quality of your research projects.

Hypothesis: The Foundation of Your Research

A hypothesis is an educated guess about the relationship between two or more variables. It provides the basis for your research question and is a starting point for an experiment or observational study.

The critical elements for a hypothesis include:

  • Specificity: A clear and concise statement that describes the relationship between variables.
  • Testability: The ability to test the hypothesis through experimentation or observation.

To learn how to write a hypothesis, it’s essential to identify your research question first and then predict the relationship between the variables.

Prediction: The Expected Outcome

A prediction is a statement about a specific outcome you expect to see in your experiment or observational study. It’s derived from the hypothesis and provides a measurable way to test the relationship between variables.

Here’s an example of how to write a hypothesis and a related prediction:

  • Hypothesis: Consuming a high-sugar diet leads to weight gain.
  • Prediction: People who consume a high-sugar diet for six weeks will gain more weight than those who maintain a low-sugar diet during the same period.

Key Differences Between a Hypothesis and a Prediction

While a hypothesis and prediction are both essential components of scientific research, there are some key differences to keep in mind:

  • A hypothesis is an educated guess that suggests a relationship between variables, while a prediction is a specific and measurable outcome based on that hypothesis.
  • A hypothesis can give rise to multiple experiment or observational study predictions.

To conclude, understanding the differences between a hypothesis and a prediction, and learning how to write a hypothesis, are essential steps to form a robust foundation for your research. By creating clear, testable hypotheses along with specific, measurable predictions, you lay the groundwork for scientifically sound investigations.

Here’s a wrap-up for this guide on how to write a hypothesis. We’re confident this article was helpful for many of you. We understand that many students struggle with writing their school research . However, we hope to continue assisting you through our blog tutorial on writing different aspects of academic assignments.

For further information, you can check out our reverent blog or contact our professionals to avail amazing writing services. Paper perk experts tailor assignments to reflect your unique voice and perspectives. Our professionals make sure to stick around till your satisfaction. So what are you waiting for? Pick your required service and order away!

How to write a good hypothesis?

How to write a hypothesis in science, how to write a research hypothesis, how to write a null hypothesis, what is the format for a scientific hypothesis, how do you structure a proper hypothesis, can you provide an example of a hypothesis, what is the ideal hypothesis structure.

The ideal hypothesis structure includes the following;

  • A clear statement of the relationship between variables.
  • testable prediction.
  • falsifiability.

If your hypothesis has all of these, it is both scientifically sound and effective.

How to write a hypothesis for product management?

Writing a hypothesis for product management involves a simple process:

  • First, identify the problem or question you want to address.
  • State your assumption or belief about the solution to that problem. .
  • Make a hypothesis by predicting a specific outcome based on your assumption.
  • Make sure your hypothesis is specific, measurable, and testable.
  • Use experiments, data analysis, or user feedback to validate your hypothesis.
  • Make informed decisions for product improvement.

Following these steps will help you in effectively formulating hypotheses for product management.

Order Original Papers & Essays

Your First Custom Paper Sample is on Us!

timely deliveries

Timely Deliveries

premium quality

No Plagiarism & AI

unlimited revisions

100% Refund

Try Our Free Paper Writing Service

Related blogs.

blog-img

Connections with Writers and support

safe service

Privacy and Confidentiality Guarantee

quality-score

Average Quality Score

IMAGES

  1. What Is A Hypothesis

    writing a hypothesis formula

  2. Research Hypothesis: Definition, Types, Examples and Quick Tips (2022)

    writing a hypothesis formula

  3. If Then Hypothesis Examples

    writing a hypothesis formula

  4. How to Write a Strong Hypothesis in 6 Simple Steps

    writing a hypothesis formula

  5. Procedure for hypothesis testing. Let’s go through the steps of…

    writing a hypothesis formula

  6. Hypothesis Testing Formula

    writing a hypothesis formula

VIDEO

  1. NEGATIVE RESEARCH HYPOTHESIS STATEMENTS l 3 EXAMPLES l RESEARCH PAPER WRITING GUIDE l THESIS TIPS

  2. Writing Hypothesis Statements

  3. Writing a hypothesis and prediction 1 (Questioning & Scientific Method)

  4. What Is A Hypothesis?

  5. WRITING HYPOTHESES

  6. The Essential Guide To Hypothesis Testing

COMMENTS

  1. How to Write a Strong Hypothesis | Steps & Examples - Scribbr

    Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Do students who attend more lectures get better exam results? Step 2. Do some preliminary research.

  2. How to Write a Hypothesis in 6 Steps, With Examples - Grammarly

    Use this guide to learn how to write a hypothesis and read successful and unsuccessful examples of a testable hypotheses.

  3. How to Formulate a Hypothesis: Example and Explanation

    How to Formulate a Hypothesis: Example and Explanation. A hypothesis is a smart guess about how things work. It helps scientists figure out what they think will happen in their experiments. Making a good hypothesis is important because it guides the research and helps find answers to questions.

  4. 5.2 - Writing Hypotheses | STAT 200

    The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis (\ (H_0\)) and an alternative hypothesis (\ (H_a\)).

  5. How to Write a Hypothesis w/ Strong Examples - Paperdue.com

    Simple Hypothesis: This formulates a relationship between two variables, one independent and one dependent. It is straightforward and concise, making it easy to test.

  6. Formulating Strong Hypotheses - Excelsior OWL

    To make sure you generate a solid hypothesis, first ask yourself these questions: What is the connection between your hypothesis and your research topic? Is your hypothesis testable? What potential explanations or justifications of the hypothesis could you explore? What are the counter-arguments to your hypothesis?

  7. How to Write a Hypothesis – Steps & Tips - Research Prospect

    A research hypothesis must be based on formulas, facts, and theories. It should be testable by data analysis, observations, experiments, or other scientific methodologies that can refute or support the statement.

  8. Hypothesis Testing | A Step-by-Step Guide with Easy Examples

    There are 5 main steps in hypothesis testing: State your research hypothesis as a null hypothesis and alternate hypothesis (H o) and (H a or H 1). Collect data in a way designed to test the hypothesis. Perform an appropriate statistical test. Decide whether to reject or fail to reject your null hypothesis.

  9. How to Write a Strong Hypothesis in 6 Simple Steps

    When it comes to writing a hypothesis, there are six basic steps: Ask a question. Gather preliminary research. Formulate an answer. Write a hypothesis. Refine your hypothesis. Create a null hypothesis.

  10. How to Write a Hypothesis 101: A Step-by-Step Guide - PaperPerk

    How to Write a Hypothesis 101: A Step-by-Step Guide. Learn How To Write A Hypothesis For Your Next Research Project! Undoubtedly, research plays a crucial role in substantiating or refuting our assumptions. These assumptions act as potential answers to our questions.