Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.
Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton
Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A theory is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition (1965) [1] . He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.
Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.
A hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observations before we can develop a broader theory.
Theories and hypotheses always have this if-then relationship. “ If drive theory is correct, then cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.
But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this question is an interesting one on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.
Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [2] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the number of examples they bring to mind and the other was that people base their judgments on how easily they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.
The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method (although this term is much more likely to be used by philosophers of science than by scientists themselves). Researchers begin with a set of phenomena and either construct a theory to explain or interpret them or choose an existing theory to work with. They then make a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researchers then conduct an empirical study to test the hypothesis. Finally, they reevaluate the theory in light of the new results and revise it if necessary. This process is usually conceptualized as a cycle because the researchers can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As Figure 2.3 shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.
As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [3] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans [Zajonc & Sales, 1966] [4] in many other studies afterward).
When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.
To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.
There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use inductive reasoning which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be positive. That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that it really does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.
A coherent explanation or interpretation of one or more phenomena.
A specific prediction about a new phenomenon that should be observed if a particular theory is accurate.
A cyclical process of theory development, starting with an observed phenomenon, then developing or using a theory to make a specific prediction of what should happen if that theory is correct, testing that prediction, refining the theory in light of the findings, and using that refined theory to develop new hypotheses, and so on.
The ability to test the hypothesis using the methods of science and the possibility to gather evidence that will disconfirm the hypothesis if it is indeed false.
Developing a Hypothesis Copyright © by Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.
A good hypothesis possesses the following certain attributes.
One of the valuable attribute of a good hypothesis is to predict for future. It not only clears the present problematic situation but also predict for the future that what would be happened in the coming time. So, hypothesis is a best guide of research activity due to power of prediction.
A hypothesis must have close contact with observable things. It does not believe on air castles but it is based on observation. Those things and objects which we cannot observe, for that hypothesis cannot be formulated. The verification of a hypothesis is based on observable things.
A hypothesis should be so dabble to every layman, P.V young says, “A hypothesis wo0uld be simple, if a researcher has more in sight towards the problem”. W-ocean stated that, “A hypothesis should be as sharp as razor’s blade”. So, a good hypothesis must be simple and have no complexity.
A hypothesis must be conceptually clear. It should be clear from ambiguous information’s. The terminology used in it must be clear and acceptable to everyone.
A good hypothesis should be tested empirically. It should be stated and formulated after verification and deep observation. Thus testability is the primary feature of a good hypothesis.
If a hypothesis is relevant to a particular problem, it would be considered as good one. A hypothesis is guidance for the identification and solution of the problem, so it must be accordance to the problem.
It should be formulated for a particular and specific problem. It should not include generalization. If generalization exists, then a hypothesis cannot reach to the correct conclusions.
Hypothesis must be relevant to the techniques which is available for testing. A researcher must know about the workable techniques before formulating a hypothesis.
It should be able to provide new suggestions and ways of knowledge. It must create new discoveries of knowledge J.S. Mill, one of the eminent researcher says that “Hypothesis is the best source of new knowledge it creates new ways of discoveries”.
Internal harmony and consistency is a major characteristic of good hypothesis. It should be out of contradictions and conflicts. There must be a close relationship between variables which one is dependent on other.
Most recent answer.
Get help with your research
Join ResearchGate to ask questions, get input, and advance your work.
We have heard of many hypotheses which have led to great inventions in science. Assumptions that are made on the basis of some evidence are known as hypotheses. In this article, let us learn in detail about the hypothesis and the type of hypothesis with examples.
A hypothesis is an assumption that is made based on some evidence. This is the initial point of any investigation that translates the research questions into predictions. It includes components like variables, population and the relation between the variables. A research hypothesis is a hypothesis that is used to test the relationship between two or more variables.
Following are the characteristics of the hypothesis:
Following are the sources of hypothesis:
There are six forms of hypothesis and they are:
It shows a relationship between one dependent variable and a single independent variable. For example – If you eat more vegetables, you will lose weight faster. Here, eating more vegetables is an independent variable, while losing weight is the dependent variable.
It shows the relationship between two or more dependent variables and two or more independent variables. Eating more vegetables and fruits leads to weight loss, glowing skin, and reduces the risk of many diseases such as heart disease.
It shows how a researcher is intellectual and committed to a particular outcome. The relationship between the variables can also predict its nature. For example- children aged four years eating proper food over a five-year period are having higher IQ levels than children not having a proper meal. This shows the effect and direction of the effect.
It is used when there is no theory involved. It is a statement that a relationship exists between two variables, without predicting the exact nature (direction) of the relationship.
It provides a statement which is contrary to the hypothesis. It’s a negative statement, and there is no relationship between independent and dependent variables. The symbol is denoted by “H O ”.
Associative hypothesis occurs when there is a change in one variable resulting in a change in the other variable. Whereas, the causal hypothesis proposes a cause and effect interaction between two or more variables.
Following are the examples of hypotheses based on their types:
Following are the functions performed by the hypothesis:
Researchers use hypotheses to put down their thoughts directing how the experiment would take place. Following are the steps that are involved in the scientific method:
What is hypothesis.
A hypothesis is an assumption made based on some evidence.
What are the types of hypothesis.
Types of hypothesis are:
Define complex hypothesis..
A complex hypothesis shows the relationship between two or more dependent variables and two or more independent variables.
Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!
Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz
Visit BYJU’S for all Physics related queries and study materials
Your result is as below
Request OTP on Voice Call
PHYSICS Related Links | |
Your Mobile number and Email id will not be published. Required fields are marked *
Post My Comment
Register with byju's & watch live videos.
Product Talk
Make better product decisions.
Originally published: November 12, 2014 by Teresa Torres | Last updated: December 7, 2018
Update: I’ve since revised this hypothesis format. You can find the most current version in this article:
“My hypothesis is …”
These words are becoming more common everyday. Product teams are starting to talk like scientists. Are you?
The internet industry is going through a mindset shift. Instead of assuming we have all the right answers, we are starting to acknowledge that building products is hard. We are accepting the reality that our ideas are going to fail more often than they are going to succeed.
Rather than waiting to find out which ideas are which after engineers build them, smart product teams are starting to integrate experimentation into their product discovery process. They are asking themselves, how can we test this idea before we invest in it?
This process starts with formulating a good hypothesis.
When we are new to hypothesis testing, we tend to start with hypotheses like these:
There’s only one problem. These aren’t testable hypotheses. They aren’t specific enough.
A good hypothesis can be clearly refuted or supported by an experiment. – Tweet This
To make sure that your hypotheses can be supported or refuted by an experiment, you will want to include each of these elements:
The Change: This is the change that you are introducing to your product. You are testing a new design, you are adding new copy to a landing page, or you are rolling out a new feature.
Be sure to get specific. Fixing a hard-to-use comment form is not specific enough. How will you fix it? Some solutions might work. Others might not. Each is a hypothesis in its own right.
Design changes can be particularly challenging. Your hypothesis should cover a specific design not the idea of a redesign.
In other words, use this:
The former can be supported or refuted by an experiment. The latter can encompass dozens of design solutions, where some might work and others might not.
The Expected Impact: The expected impact should clearly define what you expect to see as a result of making the change.
How will you know if your change is successful? Will it reduce response times, increase conversions, or grow your audience?
The expected impact needs to be specific and measurable. – Tweet This
You might hypothesize that your new design will increase usability. This isn’t specific enough.
You need to define how you will measure an increase in usability. Will it reduce the time to complete some action? Will it increase customer satisfaction? Will it reduce bounce rates?
There are dozens of ways that you might measure an increase in usability. In order for this to be a testable hypothesis, you need to define which metric you expect to be affected by this change.
Who Will Be Impacted: The third component of a good hypothesis is who will be impacted by this change. Too often, we assume everyone. But this is rarely the case.
I was recently working with a product manager who was testing a sign up form popup upon exiting a page.
I’m sure you’ve seen these before. You are reading a blog post and just as you are about to navigate away, you get a popup that asks, “Would you like to subscribe to our newsletter?”
She A/B tested this change by showing it to half of her population, leaving the rest as her control group. But there was a problem.
Some of her visitors were already subscribers. They don’t need to subscribe again. For this population, the answer to this popup will always be no.
Rather than testing with her whole population, she should be testing with just the people who are not currently subscribers.
This isn’t easy to do. And it might not sound like it’s worth the effort, but it’s the only way to get good results.
Suppose she has 100 visitors. Fifty see the popup and fifty don’t. If 45 of the people who see the popup are already subscribers and as a result they all say no, and of the five remaining visitors only 1 says yes, it’s going to look like her conversion rate is 1 out of 50, or 2%. However, if she limits her test to just the people who haven’t subscribed, her conversion rate is 1 out of 5, or 20%. This is a huge difference.
Who you test with is often the most important factor for getting clean results. – Tweet This
By how much: The fourth component builds on the expected impact. You need to define how much of an impact you expect your change to have.
For example, if you are hypothesizing that your change will increase conversion rates, then you need to estimate by how much, as in the change will increase conversion rate from x% to y%, where x is your current conversion rate and y is your expected conversion rate after making the change.
This can be hard to do and is often a guess. However, you still want to do it. It serves two purposes.
First, it helps you draw a line in the sand. This number should determine in black and white terms whether or not your hypothesis passes or fails and should dictate how you act on the results.
Suppose you hypothesize that the change will improve conversion rates by 10%, then if your change results in a 9% increase, your hypothesis fails.
This might seem extreme, but it’s a critical step in making sure that you don’t succumb to your own biases down the road.
It’s very easy after the fact to determine that 9% is good enough. Or that 2% is good enough. Or that -2% is okay, because you like the change. Without a line in the sand, you are setting yourself up to ignore your data.
The second reason why you need to define by how much is so that you can calculate for how long to run your test.
After how long: Too many teams run their tests for an arbitrary amount of time or stop the results when one version is winning.
This is a problem. It opens you up to false positives and releasing changes that don’t actually have an impact.
If you hypothesize the expected impact ahead of time than you can use a duration calculator to determine for how long to run the test.
Finally, you want to add the duration of the test to your hypothesis. This will help to ensure that everyone knows that your results aren’t valid until the duration has passed.
If your traffic is sporadic, “how long” doesn’t have to be defined in time. It can also be defined in page views or sign ups or after a specific number of any event.
Use the following examples as templates for your own hypotheses:
After you write a hypothesis, break it down into its five components to make sure that you haven’t forgotten anything.
And then ask yourself:
It’s easy to give lip service to experimentation and hypothesis testing. But if you want to get the most out of your efforts, make sure you are starting with a good hypothesis.
Did you learn something new reading this article? Keep learning. Subscribe to the Product Talk mailing list to get the next article in this series delivered to your inbox.
Get the latest from Product Talk right in your inbox.
Join 41,000+ product people. Never miss an article.
May 21, 2017 at 2:11 am
Interesting article, I am thinking about making forming a hypothesis around my product, if certain customers will find a proposed value useful. Can you kindly let me know if I’m on the right track.
“Certain customer segment (AAA) will find value in feature (XXX), to tackle their pain point ”
Change: using a feature (XXX)/ product Impact: will reduce monetary costs/ help solve a problem Who: for certain customers segment (AAA) By how much: by 5% After how long: 10 days
April 4, 2020 at 12:33 pm
Hi! Could you throw a little light on this: “Suppose you hypothesize that the change will improve conversion rates by 10%, then if your change results in a 9% increase, your hypothesis fails.”
I understood the rationale behind having a number x (10% in this case) associated with “by how much”, but could you explain with an example of how to ballpark a figure like this?
IMAGES
VIDEO
COMMENTS
A good hypothesis aligns with your research question and addresses the specific problem or phenomenon you're investigating. Keep your focus on the main topic and avoid getting sidetracked by shiny distractions. Stay relevant, my friend, and you'll find the answers you seek! And there you have it: the five characteristics of a good hypothesis.
"A hypothesis would be simple if a researcher has more insight towards the problem," P.V. Young states. W-ocean said, "A theory should be as sharp as a razor's blade". As a result, a good hypothesis must be straightforward and devoid of complication. Clarity A hypothesis must have a coherent conceptual foundation.
5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.
Key Takeaways. A good hypothesis should be clear and precise, avoiding vague language and ambiguity. It must be testable and falsifiable, meaning it can be supported or refuted through experimentation. Grounding in existing knowledge is crucial; a hypothesis should be based on prior research or established theories.
Conciseness and Clarity. A good hypothesis is brief and to the point. It should clearly state the expected outcome without unnecessary words. For example, instead of saying, "If we give plants more sunlight, they might grow taller," you could say, "Plants grow taller with increased sunlight." This makes the hypothesis easier to test and understand.
It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.
4 Alternative hypothesis. An alternative hypothesis, abbreviated as H 1 or H A, is used in conjunction with a null hypothesis. It states the opposite of the null hypothesis, so that one and only one must be true. Examples: Plants grow better with bottled water than tap water. Professional psychics win the lottery more than other people. 5 ...
Here are the most notable qualities of a strong hypothesis: Testability: Ensure the hypothesis allows you to work towards observable and testable results. Brevity and objectivity: Present your hypothesis as a brief statement and avoid wordiness. Clarity and Relevance: The hypothesis should reflect a clear idea of what we know and what we expect ...
A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...
Step 4: Refine your hypothesis. You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain: The relevant variables. The specific group being studied.
Characteristics of a Good Hypothesis. There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable. We must be able to test the hypothesis using the methods of science and if you'll recall Popper's falsifiability criterion, it must be possible to gather evidence that will disconfirm ...
The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem. 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure.
A hypothesis is an educated guess or prediction of what will happen. In science, a hypothesis proposes a relationship between factors called variables. A good hypothesis relates an independent variable and a dependent variable. The effect on the dependent variable depends on or is determined by what happens when you change the independent variable.
The hypothesis is an educated, testable prediction about what will happen. Make it clear. A good hypothesis is written in clear and simple language. Reading your hypothesis should tell a teacher or judge exactly what you thought was going to happen when you started your project. Keep the variables in mind.
hypothesis. science. scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ...
At the primary level, a hypothesis is the possible and probable explanation of the sequence of happenings or data. Sometimes, hypothesis may emerge from an imagination, common sense or a sudden event. Hypothesis can be a probable answer to the research problem undertaken for study. 4. Hypothesis may not always be true.
Characteristics of a Good Hypothesis. There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable. We must be able to test the hypothesis using the methods of science and if you'll recall Popper's falsifiability criterion, it must be possible to gather evidence that will disconfirm ...
A hypothesis should be so dabble to every layman, P.V young says, "A hypothesis wo0uld be simple, if a researcher has more in sight towards the problem". W-ocean stated that, "A hypothesis should be as sharp as razor's blade". So, a good hypothesis must be simple and have no complexity. Clarity. A hypothesis must be conceptually clear.
Alumni University of Leicester & University of Sussex. The key characteristic of a good hypothesis is the ability to derive predictions from this hypothesis about the results of future experiments ...
Functions of Hypothesis. Following are the functions performed by the hypothesis: Hypothesis helps in making an observation and experiments possible. It becomes the start point for the investigation. Hypothesis helps in verifying the observations. It helps in directing the inquiries in the right direction.
Fixing the hard-to-use comment form will increase user engagement. A redesign will improve site usability. Reducing prices will make customers happy. There's only one problem. These aren't testable hypotheses. They aren't specific enough. A good hypothesis can be clearly refuted or supported by an experiment.