- Chapter 1: Home
- Narrowing Your Topic
- Problem Statement
Purpose Statement Overview
Best practices for writing your purpose statement, writing your purpose statement, sample purpose statements.
- Student Experience Feedback Buttons
- Conceptual Framework
- Theoretical Framework
- Quantitative Research Questions This link opens in a new window
- Qualitative Research Questions This link opens in a new window
- Qualitative & Quantitative Research Support with the ASC This link opens in a new window
- Library Research Consultations This link opens in a new window
Jump to DSE Guide
The purpose statement succinctly explains (on no more than 1 page) the objectives of the research study. These objectives must directly address the problem and help close the stated gap. Expressed as a formula:
Good purpose statements:
- Flow from the problem statement and actually address the proposed problem
- Are concise and clear
- Answer the question ‘Why are you doing this research?’
- Match the methodology (similar to research questions)
- Have a ‘hook’ to get the reader’s attention
- Set the stage by clearly stating, “The purpose of this (qualitative or quantitative) study is to ...
In PhD studies, the purpose usually involves applying a theory to solve the problem. In other words, the purpose tells the reader what the goal of the study is, and what your study will accomplish, through which theoretical lens. The purpose statement also includes brief information about direction, scope, and where the data will come from.
A problem and gap in combination can lead to different research objectives, and hence, different purpose statements. In the example from above where the problem was severe underrepresentation of female CEOs in Fortune 500 companies and the identified gap related to lack of research of male-dominated boards; one purpose might be to explore implicit biases in male-dominated boards through the lens of feminist theory. Another purpose may be to determine how board members rated female and male candidates on scales of competency, professionalism, and experience to predict which candidate will be selected for the CEO position. The first purpose may involve a qualitative ethnographic study in which the researcher observes board meetings and hiring interviews; the second may involve a quantitative regression analysis. The outcomes will be very different, so it’s important that you find out exactly how you want to address a problem and help close a gap!
The purpose of the study must not only align with the problem and address a gap; it must also align with the chosen research method. In fact, the DP/DM template requires you to name the research method at the very beginning of the purpose statement. The research verb must match the chosen method. In general, quantitative studies involve “closed-ended” research verbs such as determine , measure , correlate , explain , compare , validate , identify , or examine ; whereas qualitative studies involve “open-ended” research verbs such as explore , understand , narrate , articulate [meanings], discover , or develop .
A qualitative purpose statement following the color-coded problem statement (assumed here to be low well-being among financial sector employees) + gap (lack of research on followers of mid-level managers), might start like this:
In response to declining levels of employee well-being, the purpose of the qualitative phenomenology was to explore and understand the lived experiences related to the well-being of the followers of novice mid-level managers in the financial services industry. The levels of follower well-being have been shown to correlate to employee morale, turnover intention, and customer orientation (Eren et al., 2013). A combined framework of Leader-Member Exchange (LMX) Theory and the employee well-being concept informed the research questions and supported the inquiry, analysis, and interpretation of the experiences of followers of novice managers in the financial services industry.
A quantitative purpose statement for the same problem and gap might start like this:
In response to declining levels of employee well-being, the purpose of the quantitative correlational study was to determine which leadership factors predict employee well-being of the followers of novice mid-level managers in the financial services industry. Leadership factors were measured by the Leader-Member Exchange (LMX) assessment framework by Mantlekow (2015), and employee well-being was conceptualized as a compound variable consisting of self-reported turnover-intent and psychological test scores from the Mental Health Survey (MHS) developed by Johns Hopkins University researchers.
Both of these purpose statements reflect viable research strategies and both align with the problem and gap so it’s up to the researcher to design a study in a manner that reflects personal preferences and desired study outcomes. Note that the quantitative research purpose incorporates operationalized concepts or variables ; that reflect the way the researcher intends to measure the key concepts under study; whereas the qualitative purpose statement isn’t about translating the concepts under study as variables but instead aim to explore and understand the core research phenomenon.
Always keep in mind that the dissertation process is iterative, and your writing, over time, will be refined as clarity is gradually achieved. Most of the time, greater clarity for the purpose statement and other components of the Dissertation is the result of a growing understanding of the literature in the field. As you increasingly master the literature you will also increasingly clarify the purpose of your study.
The purpose statement should flow directly from the problem statement. There should be clear and obvious alignment between the two and that alignment will get tighter and more pronounced as your work progresses.
The purpose statement should specifically address the reason for conducting the study, with emphasis on the word specifically. There should not be any doubt in your readers’ minds as to the purpose of your study. To achieve this level of clarity you will need to also insure there is no doubt in your mind as to the purpose of your study.
Many researchers benefit from stopping your work during the research process when insight strikes you and write about it while it is still fresh in your mind. This can help you clarify all aspects of a dissertation, including clarifying its purpose.
Your Chair and your committee members can help you to clarify your study’s purpose so carefully attend to any feedback they offer.
The purpose statement should reflect the research questions and vice versa. The chain of alignment that began with the research problem description and continues on to the research purpose, research questions, and methodology must be respected at all times during dissertation development. You are to succinctly describe the overarching goal of the study that reflects the research questions. Each research question narrows and focuses the purpose statement. Conversely, the purpose statement encompasses all of the research questions.
Identify in the purpose statement the research method as quantitative, qualitative or mixed (i.e., “The purpose of this [qualitative/quantitative/mixed] study is to ...)
Avoid the use of the phrase “research study” since the two words together are redundant.
Follow the initial declaration of purpose with a brief overview of how, with what instruments/data, with whom and where (as applicable) the study will be conducted. Identify variables/constructs and/or phenomenon/concept/idea. Since this section is to be a concise paragraph, emphasis must be placed on the word brief. However, adding these details will give your readers a very clear picture of the purpose of your research.
Developing the purpose section of your dissertation is usually not achieved in a single flash of insight. The process involves a great deal of reading to find out what other scholars have done to address the research topic and problem you have identified. The purpose section of your dissertation could well be the most important paragraph you write during your academic career, and every word should be carefully selected. Think of it as the DNA of your dissertation. Everything else you write should emerge directly and clearly from your purpose statement. In turn, your purpose statement should emerge directly and clearly from your research problem description. It is good practice to print out your problem statement and purpose statement and keep them in front of you as you work on each part of your dissertation in order to insure alignment.
It is helpful to collect several dissertations similar to the one you envision creating. Extract the problem descriptions and purpose statements of other dissertation authors and compare them in order to sharpen your thinking about your own work. Comparing how other dissertation authors have handled the many challenges you are facing can be an invaluable exercise. Keep in mind that individual universities use their own tailored protocols for presenting key components of the dissertation so your review of these purpose statements should focus on content rather than form.
Once your purpose statement is set it must be consistently presented throughout the dissertation. This may require some recursive editing because the way you articulate your purpose may evolve as you work on various aspects of your dissertation. Whenever you make an adjustment to your purpose statement you should carefully follow up on the editing and conceptual ramifications throughout the entire document.
In establishing your purpose you should NOT advocate for a particular outcome. Research should be done to answer questions not prove a point. As a researcher, you are to inquire with an open mind, and even when you come to the work with clear assumptions, your job is to prove the validity of the conclusions reached. For example, you would not say the purpose of your research project is to demonstrate that there is a relationship between two variables. Such a statement presupposes you know the answer before your research is conducted and promotes or supports (advocates on behalf of) a particular outcome. A more appropriate purpose statement would be to examine or explore the relationship between two variables.
Your purpose statement should not imply that you are going to prove something. You may be surprised to learn that we cannot prove anything in scholarly research for two reasons. First, in quantitative analyses, statistical tests calculate the probability that something is true rather than establishing it as true. Second, in qualitative research, the study can only purport to describe what is occurring from the perspective of the participants. Whether or not the phenomenon they are describing is true in a larger context is not knowable. We cannot observe the phenomenon in all settings and in all circumstances.
It is important to distinguish in your mind the differences between the Problem Statement and Purpose Statement.
The Problem Statement is why I am doing the research
The Purpose Statement is what type of research I am doing to fit or address the problem
The Purpose Statement includes:
- Method of Study
- Specific Population
Remember, as you are contemplating what to include in your purpose statement and then when you are writing it, the purpose statement is a concise paragraph that describes the intent of the study, and it should flow directly from the problem statement. It should specifically address the reason for conducting the study, and reflect the research questions. Further, it should identify the research method as qualitative, quantitative, or mixed. Then provide a brief overview of how the study will be conducted, with what instruments/data collection methods, and with whom (subjects) and where (as applicable). Finally, you should identify variables/constructs and/or phenomenon/concept/idea.
Qualitative Purpose Statement
Creswell (2002) suggested for writing purpose statements in qualitative research include using deliberate phrasing to alert the reader to the purpose statement. Verbs that indicate what will take place in the research and the use of non-directional language that do not suggest an outcome are key. A purpose statement should focus on a single idea or concept, with a broad definition of the idea or concept. How the concept was investigated should also be included, as well as participants in the study and locations for the research to give the reader a sense of with whom and where the study took place.
Creswell (2003) advised the following script for purpose statements in qualitative research:
“The purpose of this qualitative_________________ (strategy of inquiry, such as ethnography, case study, or other type) study is (was? will be?) to ________________ (understand? describe? develop? discover?) the _________________(central phenomenon being studied) for ______________ (the participants, such as the individual, groups, organization) at __________(research site). At this stage in the research, the __________ (central phenomenon being studied) will be generally defined as ___________________ (provide a general definition)” (pg. 90).
Quantitative Purpose Statement
Creswell (2003) offers vast differences between the purpose statements written for qualitative research and those written for quantitative research, particularly with respect to language and the inclusion of variables. The comparison of variables is often a focus of quantitative research, with the variables distinguishable by either the temporal order or how they are measured. As with qualitative research purpose statements, Creswell (2003) recommends the use of deliberate language to alert the reader to the purpose of the study, but quantitative purpose statements also include the theory or conceptual framework guiding the study and the variables that are being studied and how they are related.
Creswell (2003) suggests the following script for drafting purpose statements in quantitative research:
“The purpose of this _____________________ (experiment? survey?) study is (was? will be?) to test the theory of _________________that _________________ (compares? relates?) the ___________(independent variable) to _________________________(dependent variable), controlling for _______________________ (control variables) for ___________________ (participants) at _________________________ (the research site). The independent variable(s) _____________________ will be generally defined as _______________________ (provide a general definition). The dependent variable(s) will be generally defined as _____________________ (provide a general definition), and the control and intervening variables(s), _________________ (identify the control and intervening variables) will be statistically controlled in this study” (pg. 97).
- The purpose of this qualitative study was to determine how participation in service-learning in an alternative school impacted students academically, civically, and personally. There is ample evidence demonstrating the failure of schools for students at-risk; however, there is still a need to demonstrate why these students are successful in non-traditional educational programs like the service-learning model used at TDS. This study was unique in that it examined one alternative school’s approach to service-learning in a setting where students not only serve, but faculty serve as volunteer teachers. The use of a constructivist approach in service-learning in an alternative school setting was examined in an effort to determine whether service-learning participation contributes positively to academic, personal, and civic gain for students, and to examine student and teacher views regarding the overall outcomes of service-learning. This study was completed using an ethnographic approach that included observations, content analysis, and interviews with teachers at The David School.
- The purpose of this quantitative non-experimental cross-sectional linear multiple regression design was to investigate the relationship among early childhood teachers’ self-reported assessment of multicultural awareness as measured by responses from the Teacher Multicultural Attitude Survey (TMAS) and supervisors’ observed assessment of teachers’ multicultural competency skills as measured by the Multicultural Teaching Competency Scale (MTCS) survey. Demographic data such as number of multicultural training hours, years teaching in Dubai, curriculum program at current school, and age were also examined and their relationship to multicultural teaching competency. The study took place in the emirate of Dubai where there were 14,333 expatriate teachers employed in private schools (KHDA, 2013b).
- The purpose of this quantitative, non-experimental study is to examine the degree to which stages of change, gender, acculturation level and trauma types predicts the reluctance of Arab refugees, aged 18 and over, in the Dearborn, MI area, to seek professional help for their mental health needs. This study will utilize four instruments to measure these variables: University of Rhode Island Change Assessment (URICA: DiClemente & Hughes, 1990); Cumulative Trauma Scale (Kira, 2012); Acculturation Rating Scale for Arabic Americans-II Arabic and English (ARSAA-IIA, ARSAA-IIE: Jadalla & Lee, 2013), and a demographic survey. This study will examine 1) the relationship between stages of change, gender, acculturation levels, and trauma types and Arab refugees’ help-seeking behavior, 2) the degree to which any of these variables can predict Arab refugee help-seeking behavior. Additionally, the outcome of this study could provide researchers and clinicians with a stage-based model, TTM, for measuring Arab refugees’ help-seeking behavior and lay a foundation for how TTM can help target the clinical needs of Arab refugees. Lastly, this attempt to apply the TTM model to Arab refugees’ condition could lay the foundation for future research to investigate the application of TTM to clinical work among refugee populations.
- The purpose of this qualitative, phenomenological study is to describe the lived experiences of LLM for 10 EFL learners in rural Guatemala and to utilize that data to determine how it conforms to, or possibly challenges, current theoretical conceptions of LLM. In accordance with Morse’s (1994) suggestion that a phenomenological study should utilize at least six participants, this study utilized semi-structured interviews with 10 EFL learners to explore why and how they have experienced the motivation to learn English throughout their lives. The methodology of horizontalization was used to break the interview protocols into individual units of meaning before analyzing these units to extract the overarching themes (Moustakas, 1994). These themes were then interpreted into a detailed description of LLM as experienced by EFL students in this context. Finally, the resulting description was analyzed to discover how these learners’ lived experiences with LLM conformed with and/or diverged from current theories of LLM.
- The purpose of this qualitative, embedded, multiple case study was to examine how both parent-child attachment relationships are impacted by the quality of the paternal and maternal caregiver-child interactions that occur throughout a maternal deployment, within the context of dual-military couples. In order to examine this phenomenon, an embedded, multiple case study was conducted, utilizing an attachment systems metatheory perspective. The study included four dual-military couples who experienced a maternal deployment to Operation Iraqi Freedom (OIF) or Operation Enduring Freedom (OEF) when they had at least one child between 8 weeks-old to 5 years-old. Each member of the couple participated in an individual, semi-structured interview with the researcher and completed the Parenting Relationship Questionnaire (PRQ). “The PRQ is designed to capture a parent’s perspective on the parent-child relationship” (Pearson, 2012, para. 1) and was used within the proposed study for this purpose. The PRQ was utilized to triangulate the data (Bekhet & Zauszniewski, 2012) as well as to provide some additional information on the parents’ perspective of the quality of the parent-child attachment relationship in regards to communication, discipline, parenting confidence, relationship satisfaction, and time spent together (Pearson, 2012). The researcher utilized the semi-structured interview to collect information regarding the parents' perspectives of the quality of their parental caregiver behaviors during the deployment cycle, the mother's parent-child interactions while deployed, the behavior of the child or children at time of reunification, and the strategies or behaviors the parents believe may have contributed to their child's behavior at the time of reunification. The results of this study may be utilized by the military, and by civilian providers, to develop proactive and preventive measures that both providers and parents can implement, to address any potential adverse effects on the parent-child attachment relationship, identified through the proposed study. The results of this study may also be utilized to further refine and understand the integration of attachment theory and systems theory, in both clinical and research settings, within the field of marriage and family therapy.
Was this resource helpful?
- << Previous: Problem Statement
- Next: Alignment >>
- Last Updated: Apr 24, 2024 2:48 PM
- URL: https://resources.nu.edu/c.php?g=1006886
© Copyright 2024 National University. All Rights Reserved.
Privacy Policy | Consumer Information
educational research techniques
Research techniques and education.
Tips for Writing Quantitative Purpose Statements
There are several equally acceptable ways to write purpose statements for quantitative studies. This post will share some suggestion for getting started
Ideas for Writing Quantitative Purpose Statements
A well-written quantitative purpose statement contains the following elements
- identified variables
- the relationship among the variables
- the participants
- the site of the research
Here is an example
Here is a breakdown of the elements of the purpose statement above.
- identified variables [Height and Weight]
- the relationship among the variables [Height is the independent variable weight is the dependent variable]
- the participants [undergrad students]
- the site of the research [Thailand]
Here are some additional tips
- Try to write purpose statements in one sentence
- Start with the phrase “the purpose of this study” it’s a clue to readers
- Specify all variables in the study such as independent, dependent, mediating etc.
- Independent
- Mediating or control
- Variables are used for relationships between two or more, compare groups, or description
- If you are testing a theory, comparing groups, or describing something, state this in the purpose statement
Below is an example, the characteristics of a purpose statement are underlined and in parentheses.
The purpose of this study is to test the theory of planned behavior (the theory) by relating social support (independent variable) to college intention to dropout (independent variable) for undergrad students (participants) in Thailand (research site)
Comparison is another common form of research. Below is a purpose statement that focuses on comparing groups. the characteristics of a purpose statement are underlined and in parentheses.
The purpose of this study music choice (independent variable) of classical (group 1) , contemporary (group 2) , and no music (group 3) in terms of its influence on academic performance (dependent variable) for undergrad students (participants) in Thailand (research site)
In the above example, music choice is the independent variable that is hypothesized to influence academic performance. Three types of treatment are employed classical, contemporary, and no music. The goal is to see if there is a difference in the means of academic performance at the completion of the study.
Purpose statements for quantitative studies are important as they lay the foundation for a study. A good statement tells a reader what to expect for the rest of the study. For this reason, researchers need to be careful and think of the purpose statement with care.
Share this:
1 thought on “ tips for writing quantitative purpose statements ”.
Pingback: Top 100 Research Statement Writing Services – Research Statement
Leave a Reply Cancel reply
Discover more from educational research techniques.
Subscribe now to keep reading and get access to the full archive.
Type your email…
Continue reading
- Privacy Policy
Home » Quantitative Research – Methods, Types and Analysis
Quantitative Research – Methods, Types and Analysis
Table of Contents
Quantitative Research
Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions . This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected. It often involves the use of surveys, experiments, or other structured data collection methods to gather quantitative data.
Quantitative Research Methods
Quantitative Research Methods are as follows:
Descriptive Research Design
Descriptive research design is used to describe the characteristics of a population or phenomenon being studied. This research method is used to answer the questions of what, where, when, and how. Descriptive research designs use a variety of methods such as observation, case studies, and surveys to collect data. The data is then analyzed using statistical tools to identify patterns and relationships.
Correlational Research Design
Correlational research design is used to investigate the relationship between two or more variables. Researchers use correlational research to determine whether a relationship exists between variables and to what extent they are related. This research method involves collecting data from a sample and analyzing it using statistical tools such as correlation coefficients.
Quasi-experimental Research Design
Quasi-experimental research design is used to investigate cause-and-effect relationships between variables. This research method is similar to experimental research design, but it lacks full control over the independent variable. Researchers use quasi-experimental research designs when it is not feasible or ethical to manipulate the independent variable.
Experimental Research Design
Experimental research design is used to investigate cause-and-effect relationships between variables. This research method involves manipulating the independent variable and observing the effects on the dependent variable. Researchers use experimental research designs to test hypotheses and establish cause-and-effect relationships.
Survey Research
Survey research involves collecting data from a sample of individuals using a standardized questionnaire. This research method is used to gather information on attitudes, beliefs, and behaviors of individuals. Researchers use survey research to collect data quickly and efficiently from a large sample size. Survey research can be conducted through various methods such as online, phone, mail, or in-person interviews.
Quantitative Research Analysis Methods
Here are some commonly used quantitative research analysis methods:
Statistical Analysis
Statistical analysis is the most common quantitative research analysis method. It involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis can be used to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.
Regression Analysis
Regression analysis is a statistical technique used to analyze the relationship between one dependent variable and one or more independent variables. Researchers use regression analysis to identify and quantify the impact of independent variables on the dependent variable.
Factor Analysis
Factor analysis is a statistical technique used to identify underlying factors that explain the correlations among a set of variables. Researchers use factor analysis to reduce a large number of variables to a smaller set of factors that capture the most important information.
Structural Equation Modeling
Structural equation modeling is a statistical technique used to test complex relationships between variables. It involves specifying a model that includes both observed and unobserved variables, and then using statistical methods to test the fit of the model to the data.
Time Series Analysis
Time series analysis is a statistical technique used to analyze data that is collected over time. It involves identifying patterns and trends in the data, as well as any seasonal or cyclical variations.
Multilevel Modeling
Multilevel modeling is a statistical technique used to analyze data that is nested within multiple levels. For example, researchers might use multilevel modeling to analyze data that is collected from individuals who are nested within groups, such as students nested within schools.
Applications of Quantitative Research
Quantitative research has many applications across a wide range of fields. Here are some common examples:
- Market Research : Quantitative research is used extensively in market research to understand consumer behavior, preferences, and trends. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform marketing strategies, product development, and pricing decisions.
- Health Research: Quantitative research is used in health research to study the effectiveness of medical treatments, identify risk factors for diseases, and track health outcomes over time. Researchers use statistical methods to analyze data from clinical trials, surveys, and other sources to inform medical practice and policy.
- Social Science Research: Quantitative research is used in social science research to study human behavior, attitudes, and social structures. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform social policies, educational programs, and community interventions.
- Education Research: Quantitative research is used in education research to study the effectiveness of teaching methods, assess student learning outcomes, and identify factors that influence student success. Researchers use experimental and quasi-experimental designs, as well as surveys and other quantitative methods, to collect and analyze data.
- Environmental Research: Quantitative research is used in environmental research to study the impact of human activities on the environment, assess the effectiveness of conservation strategies, and identify ways to reduce environmental risks. Researchers use statistical methods to analyze data from field studies, experiments, and other sources.
Characteristics of Quantitative Research
Here are some key characteristics of quantitative research:
- Numerical data : Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.
- Large sample size: Quantitative research often involves collecting data from a large sample of individuals or groups in order to increase the reliability and generalizability of the findings.
- Objective approach: Quantitative research aims to be objective and impartial in its approach, focusing on the collection and analysis of data rather than personal beliefs, opinions, or experiences.
- Control over variables: Quantitative research often involves manipulating variables to test hypotheses and establish cause-and-effect relationships. Researchers aim to control for extraneous variables that may impact the results.
- Replicable : Quantitative research aims to be replicable, meaning that other researchers should be able to conduct similar studies and obtain similar results using the same methods.
- Statistical analysis: Quantitative research involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis allows researchers to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.
- Generalizability: Quantitative research aims to produce findings that can be generalized to larger populations beyond the specific sample studied. This is achieved through the use of random sampling methods and statistical inference.
Examples of Quantitative Research
Here are some examples of quantitative research in different fields:
- Market Research: A company conducts a survey of 1000 consumers to determine their brand awareness and preferences. The data is analyzed using statistical methods to identify trends and patterns that can inform marketing strategies.
- Health Research : A researcher conducts a randomized controlled trial to test the effectiveness of a new drug for treating a particular medical condition. The study involves collecting data from a large sample of patients and analyzing the results using statistical methods.
- Social Science Research : A sociologist conducts a survey of 500 people to study attitudes toward immigration in a particular country. The data is analyzed using statistical methods to identify factors that influence these attitudes.
- Education Research: A researcher conducts an experiment to compare the effectiveness of two different teaching methods for improving student learning outcomes. The study involves randomly assigning students to different groups and collecting data on their performance on standardized tests.
- Environmental Research : A team of researchers conduct a study to investigate the impact of climate change on the distribution and abundance of a particular species of plant or animal. The study involves collecting data on environmental factors and population sizes over time and analyzing the results using statistical methods.
- Psychology : A researcher conducts a survey of 500 college students to investigate the relationship between social media use and mental health. The data is analyzed using statistical methods to identify correlations and potential causal relationships.
- Political Science: A team of researchers conducts a study to investigate voter behavior during an election. They use survey methods to collect data on voting patterns, demographics, and political attitudes, and analyze the results using statistical methods.
How to Conduct Quantitative Research
Here is a general overview of how to conduct quantitative research:
- Develop a research question: The first step in conducting quantitative research is to develop a clear and specific research question. This question should be based on a gap in existing knowledge, and should be answerable using quantitative methods.
- Develop a research design: Once you have a research question, you will need to develop a research design. This involves deciding on the appropriate methods to collect data, such as surveys, experiments, or observational studies. You will also need to determine the appropriate sample size, data collection instruments, and data analysis techniques.
- Collect data: The next step is to collect data. This may involve administering surveys or questionnaires, conducting experiments, or gathering data from existing sources. It is important to use standardized methods to ensure that the data is reliable and valid.
- Analyze data : Once the data has been collected, it is time to analyze it. This involves using statistical methods to identify patterns, trends, and relationships between variables. Common statistical techniques include correlation analysis, regression analysis, and hypothesis testing.
- Interpret results: After analyzing the data, you will need to interpret the results. This involves identifying the key findings, determining their significance, and drawing conclusions based on the data.
- Communicate findings: Finally, you will need to communicate your findings. This may involve writing a research report, presenting at a conference, or publishing in a peer-reviewed journal. It is important to clearly communicate the research question, methods, results, and conclusions to ensure that others can understand and replicate your research.
When to use Quantitative Research
Here are some situations when quantitative research can be appropriate:
- To test a hypothesis: Quantitative research is often used to test a hypothesis or a theory. It involves collecting numerical data and using statistical analysis to determine if the data supports or refutes the hypothesis.
- To generalize findings: If you want to generalize the findings of your study to a larger population, quantitative research can be useful. This is because it allows you to collect numerical data from a representative sample of the population and use statistical analysis to make inferences about the population as a whole.
- To measure relationships between variables: If you want to measure the relationship between two or more variables, such as the relationship between age and income, or between education level and job satisfaction, quantitative research can be useful. It allows you to collect numerical data on both variables and use statistical analysis to determine the strength and direction of the relationship.
- To identify patterns or trends: Quantitative research can be useful for identifying patterns or trends in data. For example, you can use quantitative research to identify trends in consumer behavior or to identify patterns in stock market data.
- To quantify attitudes or opinions : If you want to measure attitudes or opinions on a particular topic, quantitative research can be useful. It allows you to collect numerical data using surveys or questionnaires and analyze the data using statistical methods to determine the prevalence of certain attitudes or opinions.
Purpose of Quantitative Research
The purpose of quantitative research is to systematically investigate and measure the relationships between variables or phenomena using numerical data and statistical analysis. The main objectives of quantitative research include:
- Description : To provide a detailed and accurate description of a particular phenomenon or population.
- Explanation : To explain the reasons for the occurrence of a particular phenomenon, such as identifying the factors that influence a behavior or attitude.
- Prediction : To predict future trends or behaviors based on past patterns and relationships between variables.
- Control : To identify the best strategies for controlling or influencing a particular outcome or behavior.
Quantitative research is used in many different fields, including social sciences, business, engineering, and health sciences. It can be used to investigate a wide range of phenomena, from human behavior and attitudes to physical and biological processes. The purpose of quantitative research is to provide reliable and valid data that can be used to inform decision-making and improve understanding of the world around us.
Advantages of Quantitative Research
There are several advantages of quantitative research, including:
- Objectivity : Quantitative research is based on objective data and statistical analysis, which reduces the potential for bias or subjectivity in the research process.
- Reproducibility : Because quantitative research involves standardized methods and measurements, it is more likely to be reproducible and reliable.
- Generalizability : Quantitative research allows for generalizations to be made about a population based on a representative sample, which can inform decision-making and policy development.
- Precision : Quantitative research allows for precise measurement and analysis of data, which can provide a more accurate understanding of phenomena and relationships between variables.
- Efficiency : Quantitative research can be conducted relatively quickly and efficiently, especially when compared to qualitative research, which may involve lengthy data collection and analysis.
- Large sample sizes : Quantitative research can accommodate large sample sizes, which can increase the representativeness and generalizability of the results.
Limitations of Quantitative Research
There are several limitations of quantitative research, including:
- Limited understanding of context: Quantitative research typically focuses on numerical data and statistical analysis, which may not provide a comprehensive understanding of the context or underlying factors that influence a phenomenon.
- Simplification of complex phenomena: Quantitative research often involves simplifying complex phenomena into measurable variables, which may not capture the full complexity of the phenomenon being studied.
- Potential for researcher bias: Although quantitative research aims to be objective, there is still the potential for researcher bias in areas such as sampling, data collection, and data analysis.
- Limited ability to explore new ideas: Quantitative research is often based on pre-determined research questions and hypotheses, which may limit the ability to explore new ideas or unexpected findings.
- Limited ability to capture subjective experiences : Quantitative research is typically focused on objective data and may not capture the subjective experiences of individuals or groups being studied.
- Ethical concerns : Quantitative research may raise ethical concerns, such as invasion of privacy or the potential for harm to participants.
About the author
Muhammad Hassan
Researcher, Academic Writer, Web developer
You may also like
Correlational Research – Methods, Types and...
Textual Analysis – Types, Examples and Guide
Experimental Design – Types, Methods, Guide
Descriptive Research Design – Types, Methods and...
Survey Research – Types, Methods, Examples
Exploratory Research – Types, Methods and...
21 Research Objectives Examples (Copy and Paste)
Chris Drew (PhD)
Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]
Learn about our Editorial Process
Research objectives refer to the definitive statements made by researchers at the beginning of a research project detailing exactly what a research project aims to achieve.
These objectives are explicit goals clearly and concisely projected by the researcher to present a clear intention or course of action for his or her qualitative or quantitative study.
Research objectives are typically nested under one overarching research aim. The objectives are the steps you’ll need to take in order to achieve the aim (see the examples below, for example, which demonstrate an aim followed by 3 objectives, which is what I recommend to my research students).
Research Objectives vs Research Aims
Research aim and research objectives are fundamental constituents of any study, fitting together like two pieces of the same puzzle.
The ‘research aim’ describes the overarching goal or purpose of the study (Kumar, 2019). This is usually a broad, high-level purpose statement, summing up the central question that the research intends to answer.
Example of an Overarching Research Aim:
“The aim of this study is to explore the impact of climate change on crop productivity.”
Comparatively, ‘research objectives’ are concrete goals that underpin the research aim, providing stepwise actions to achieve the aim.
Objectives break the primary aim into manageable, focused pieces, and are usually characterized as being more specific, measurable, achievable, relevant, and time-bound (SMART).
Examples of Specific Research Objectives:
1. “To examine the effects of rising temperatures on the yield of rice crops during the upcoming growth season.” 2. “To assess changes in rainfall patterns in major agricultural regions over the first decade of the twenty-first century (2000-2010).” 3. “To analyze the impact of changing weather patterns on crop diseases within the same timeframe.”
The distinction between these two terms, though subtle, is significant for successfully conducting a study. The research aim provides the study with direction, while the research objectives set the path to achieving this aim, thereby ensuring the study’s efficiency and effectiveness.
How to Write Research Objectives
I usually recommend to my students that they use the SMART framework to create their research objectives.
SMART is an acronym standing for Specific, Measurable, Achievable, Relevant, and Time-bound. It provides a clear method of defining solid research objectives and helps students know where to start in writing their objectives (Locke & Latham, 2013).
Each element of this acronym adds a distinct dimension to the framework, aiding in the creation of comprehensive, well-delineated objectives.
Here is each step:
- Specific : We need to avoid ambiguity in our objectives. They need to be clear and precise (Doran, 1981). For instance, rather than stating the objective as “to study the effects of social media,” a more focused detail would be “to examine the effects of social media use (Facebook, Instagram, and Twitter) on the academic performance of college students.”
- Measurable: The measurable attribute provides a clear criterion to determine if the objective has been met (Locke & Latham, 2013). A quantifiable element, such as a percentage or a number, adds a measurable quality. For example, “to increase response rate to the annual customer survey by 10%,” makes it easier to ascertain achievement.
- Achievable: The achievable aspect encourages researchers to craft realistic objectives, resembling a self-check mechanism to ensure the objectives align with the scope and resources at disposal (Doran, 1981). For example, “to interview 25 participants selected randomly from a population of 100” is an attainable objective as long as the researcher has access to these participants.
- Relevance : Relevance, the fourth element, compels the researcher to tailor the objectives in alignment with overarching goals of the study (Locke & Latham, 2013). This is extremely important – each objective must help you meet your overall one-sentence ‘aim’ in your study.
- Time-Bound: Lastly, the time-bound element fosters a sense of urgency and prioritization, preventing procrastination and enhancing productivity (Doran, 1981). “To analyze the effect of laptop use in lectures on student engagement over the course of two semesters this year” expresses a clear deadline, thus serving as a motivator for timely completion.
You’re not expected to fit every single element of the SMART framework in one objective, but across your objectives, try to touch on each of the five components.
Research Objectives Examples
1. Field: Psychology
Aim: To explore the impact of sleep deprivation on cognitive performance in college students.
- Objective 1: To compare cognitive test scores of students with less than six hours of sleep and those with 8 or more hours of sleep.
- Objective 2: To investigate the relationship between class grades and reported sleep duration.
- Objective 3: To survey student perceptions and experiences on how sleep deprivation affects their cognitive capabilities.
2. Field: Environmental Science
Aim: To understand the effects of urban green spaces on human well-being in a metropolitan city.
- Objective 1: To assess the physical and mental health benefits of regular exposure to urban green spaces.
- Objective 2: To evaluate the social impacts of urban green spaces on community interactions.
- Objective 3: To examine patterns of use for different types of urban green spaces.
3. Field: Technology
Aim: To investigate the influence of using social media on productivity in the workplace.
- Objective 1: To measure the amount of time spent on social media during work hours.
- Objective 2: To evaluate the perceived impact of social media use on task completion and work efficiency.
- Objective 3: To explore whether company policies on social media usage correlate with different patterns of productivity.
4. Field: Education
Aim: To examine the effectiveness of online vs traditional face-to-face learning on student engagement and achievement.
- Objective 1: To compare student grades between the groups exposed to online and traditional face-to-face learning.
- Objective 2: To assess student engagement levels in both learning environments.
- Objective 3: To collate student perceptions and preferences regarding both learning methods.
5. Field: Health
Aim: To determine the impact of a Mediterranean diet on cardiac health among adults over 50.
- Objective 1: To assess changes in cardiovascular health metrics after following a Mediterranean diet for six months.
- Objective 2: To compare these health metrics with a similar group who follow their regular diet.
- Objective 3: To document participants’ experiences and adherence to the Mediterranean diet.
6. Field: Environmental Science
Aim: To analyze the impact of urban farming on community sustainability.
- Objective 1: To document the types and quantity of food produced through urban farming initiatives.
- Objective 2: To assess the effect of urban farming on local communities’ access to fresh produce.
- Objective 3: To examine the social dynamics and cooperative relationships in the creating and maintaining of urban farms.
7. Field: Sociology
Aim: To investigate the influence of home offices on work-life balance during remote work.
- Objective 1: To survey remote workers on their perceptions of work-life balance since setting up home offices.
- Objective 2: To conduct an observational study of daily work routines and family interactions in a home office setting.
- Objective 3: To assess the correlation, if any, between physical boundaries of workspaces and mental boundaries for work in the home setting.
8. Field: Economics
Aim: To evaluate the effects of minimum wage increases on small businesses.
- Objective 1: To analyze cost structures, pricing changes, and profitability of small businesses before and after minimum wage increases.
- Objective 2: To survey small business owners on the strategies they employ to navigate minimum wage increases.
- Objective 3: To examine employment trends in small businesses in response to wage increase legislation.
9. Field: Education
Aim: To explore the role of extracurricular activities in promoting soft skills among high school students.
- Objective 1: To assess the variety of soft skills developed through different types of extracurricular activities.
- Objective 2: To compare self-reported soft skills between students who participate in extracurricular activities and those who do not.
- Objective 3: To investigate the teachers’ perspectives on the contribution of extracurricular activities to students’ skill development.
10. Field: Technology
Aim: To assess the impact of virtual reality (VR) technology on the tourism industry.
- Objective 1: To document the types and popularity of VR experiences available in the tourism market.
- Objective 2: To survey tourists on their interest levels and satisfaction rates with VR tourism experiences.
- Objective 3: To determine whether VR tourism experiences correlate with increased interest in real-life travel to the simulated destinations.
11. Field: Biochemistry
Aim: To examine the role of antioxidants in preventing cellular damage.
- Objective 1: To identify the types and quantities of antioxidants in common fruits and vegetables.
- Objective 2: To determine the effects of various antioxidants on free radical neutralization in controlled lab tests.
- Objective 3: To investigate potential beneficial impacts of antioxidant-rich diets on long-term cellular health.
12. Field: Linguistics
Aim: To determine the influence of early exposure to multiple languages on cognitive development in children.
- Objective 1: To assess cognitive development milestones in monolingual and multilingual children.
- Objective 2: To document the number and intensity of language exposures for each group in the study.
- Objective 3: To investigate the specific cognitive advantages, if any, enjoyed by multilingual children.
13. Field: Art History
Aim: To explore the impact of the Renaissance period on modern-day art trends.
- Objective 1: To identify key characteristics and styles of Renaissance art.
- Objective 2: To analyze modern art pieces for the influence of the Renaissance style.
- Objective 3: To survey modern-day artists for their inspirations and the influence of historical art movements on their work.
14. Field: Cybersecurity
Aim: To assess the effectiveness of two-factor authentication (2FA) in preventing unauthorized system access.
- Objective 1: To measure the frequency of unauthorized access attempts before and after the introduction of 2FA.
- Objective 2: To survey users about their experiences and challenges with 2FA implementation.
- Objective 3: To evaluate the efficacy of different types of 2FA (SMS-based, authenticator apps, biometrics, etc.).
15. Field: Cultural Studies
Aim: To analyze the role of music in cultural identity formation among ethnic minorities.
- Objective 1: To document the types and frequency of traditional music practices within selected ethnic minority communities.
- Objective 2: To survey community members on the role of music in their personal and communal identity.
- Objective 3: To explore the resilience and transmission of traditional music practices in contemporary society.
16. Field: Astronomy
Aim: To explore the impact of solar activity on satellite communication.
- Objective 1: To categorize different types of solar activities and their frequencies of occurrence.
- Objective 2: To ascertain how variations in solar activity may influence satellite communication.
- Objective 3: To investigate preventative and damage-control measures currently in place during periods of high solar activity.
17. Field: Literature
Aim: To examine narrative techniques in contemporary graphic novels.
- Objective 1: To identify a range of narrative techniques employed in this genre.
- Objective 2: To analyze the ways in which these narrative techniques engage readers and affect story interpretation.
- Objective 3: To compare narrative techniques in graphic novels to those found in traditional printed novels.
18. Field: Renewable Energy
Aim: To investigate the feasibility of solar energy as a primary renewable resource within urban areas.
- Objective 1: To quantify the average sunlight hours across urban areas in different climatic zones.
- Objective 2: To calculate the potential solar energy that could be harnessed within these areas.
- Objective 3: To identify barriers or challenges to widespread solar energy implementation in urban settings and potential solutions.
19. Field: Sports Science
Aim: To evaluate the role of pre-game rituals in athlete performance.
- Objective 1: To identify the variety and frequency of pre-game rituals among professional athletes in several sports.
- Objective 2: To measure the impact of pre-game rituals on individual athletes’ performance metrics.
- Objective 3: To examine the psychological mechanisms that might explain the effects (if any) of pre-game ritual on performance.
20. Field: Ecology
Aim: To investigate the effects of urban noise pollution on bird populations.
- Objective 1: To record and quantify urban noise levels in various bird habitats.
- Objective 2: To measure bird population densities in relation to noise levels.
- Objective 3: To determine any changes in bird behavior or vocalization linked to noise levels.
21. Field: Food Science
Aim: To examine the influence of cooking methods on the nutritional value of vegetables.
- Objective 1: To identify the nutrient content of various vegetables both raw and after different cooking processes.
- Objective 2: To compare the effect of various cooking methods on the nutrient retention of these vegetables.
- Objective 3: To propose cooking strategies that optimize nutrient retention.
The Importance of Research Objectives
The importance of research objectives cannot be overstated. In essence, these guideposts articulate what the researcher aims to discover, understand, or examine (Kothari, 2014).
When drafting research objectives, it’s essential to make them simple and comprehensible, specific to the point of being quantifiable where possible, achievable in a practical sense, relevant to the chosen research question, and time-constrained to ensure efficient progress (Kumar, 2019).
Remember that a good research objective is integral to the success of your project, offering a clear path forward for setting out a research design , and serving as the bedrock of your study plan. Each objective must distinctly address a different dimension of your research question or problem (Kothari, 2014). Always bear in mind that the ultimate purpose of your research objectives is to succinctly encapsulate your aims in the clearest way possible, facilitating a coherent, comprehensive and rational approach to your planned study, and furnishing a scientific roadmap for your journey into the depths of knowledge and research (Kumar, 2019).
Kothari, C.R (2014). Research Methodology: Methods and Techniques . New Delhi: New Age International.
Kumar, R. (2019). Research Methodology: A Step-by-Step Guide for Beginners .New York: SAGE Publications.
Doran, G. T. (1981). There’s a S.M.A.R.T. way to write management’s goals and objectives. Management review, 70 (11), 35-36.
Locke, E. A., & Latham, G. P. (2013). New Developments in Goal Setting and Task Performance . New York: Routledge.
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 10 Reasons you’re Perpetually Single
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 20 Montessori Toddler Bedrooms (Design Inspiration)
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 21 Montessori Homeschool Setups
- Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples
Leave a Comment Cancel Reply
Your email address will not be published. Required fields are marked *
- Skip to main content
- Skip to primary sidebar
- Skip to footer
- QuestionPro
- Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
- Resources Blog eBooks Survey Templates Case Studies Training Help center
Home Market Research
Quantitative Research: What It Is, Practices & Methods
Quantitative research involves analyzing and gathering numerical data to uncover trends, calculate averages, evaluate relationships, and derive overarching insights. It’s used in various fields, including the natural and social sciences. Quantitative data analysis employs statistical techniques for processing and interpreting numeric data.
Research designs in the quantitative realm outline how data will be collected and analyzed with methods like experiments and surveys. Qualitative methods complement quantitative research by focusing on non-numerical data, adding depth to understanding. Data collection methods can be qualitative or quantitative, depending on research goals. Researchers often use a combination of both approaches to gain a comprehensive understanding of phenomena.
What is Quantitative Research?
Quantitative research is a systematic investigation of phenomena by gathering quantifiable data and performing statistical, mathematical, or computational techniques. Quantitative research collects statistically significant information from existing and potential customers. It uses sampling methods and sending out online surveys , online polls , and questionnaires , for example.
One of the main characteristics of this type of research is that the results can be depicted in numerical form. After carefully collecting structured observations and understanding these numbers, it’s possible to predict the future of a product or service, establish causal relationships or Causal Research , and make changes accordingly. Quantitative research primarily centers on the analysis of numerical data and utilizes inferential statistics to derive conclusions that can be extrapolated to the broader population.
An example of a quantitative research study is the survey conducted to understand how long a doctor takes to tend to a patient when the patient walks into the hospital. A patient satisfaction survey can be administered to ask questions like how long a doctor takes to see a patient, how often a patient walks into a hospital, and other such questions, which are dependent variables in the research. This kind of research method is often employed in the social sciences, and it involves using mathematical frameworks and theories to effectively present data, ensuring that the results are logical, statistically sound, and unbiased.
Data collection in quantitative research uses a structured method and is typically conducted on larger samples representing the entire population. Researchers use quantitative methods to collect numerical data, which is then subjected to statistical analysis to determine statistically significant findings. This approach is valuable in both experimental research and social research. It helps in making informed decisions and drawing reliable conclusions based on quantitative data.
Quantitative Research Characteristics
Quantitative research has several unique characteristics that make it well-suited for specific projects. Let’s explore the most crucial of these characteristics so that you can consider them when planning your next research project:
- Structured tools: Quantitative research relies on structured tools such as surveys, polls, or questionnaires to gather quantitative data . Using such structured methods helps collect in-depth and actionable numerical data from the survey respondents, making it easier to perform data analysis.
- Sample size: Quantitative research is conducted on a significant sample size representing the target market . Appropriate Survey Sampling methods, a fundamental aspect of quantitative research methods, must be employed when deriving the sample to fortify the research objective and ensure the reliability of the results.
- Close-ended questions: Closed-ended questions , specifically designed to align with the research objectives, are a cornerstone of quantitative research. These questions facilitate the collection of quantitative data and are extensively used in data collection processes.
- Prior studies: Before collecting feedback from respondents, researchers often delve into previous studies related to the research topic. This preliminary research helps frame the study effectively and ensures the data collection process is well-informed.
- Quantitative data: Typically, quantitative data is represented using tables, charts, graphs, or other numerical forms. This visual representation aids in understanding the collected data and is essential for rigorous data analysis, a key component of quantitative research methods.
- Generalization of results: One of the strengths of quantitative research is its ability to generalize results to the entire population. It means that the findings derived from a sample can be extrapolated to make informed decisions and take appropriate actions for improvement based on numerical data analysis.
Quantitative Research Methods
Quantitative research methods are systematic approaches used to gather and analyze numerical data to understand and draw conclusions about a phenomenon or population. Here are the quantitative research methods:
- Primary quantitative research methods
- Secondary quantitative research methods
Primary Quantitative Research Methods
Primary quantitative research is the most widely used method of conducting market research. The distinct feature of primary research is that the researcher focuses on collecting data directly rather than depending on data collected from previously done research. Primary quantitative research design can be broken down into three further distinctive tracks and the process flow. They are:
A. Techniques and Types of Studies
There are multiple types of primary quantitative research. They can be distinguished into the four following distinctive methods, which are:
01. Survey Research
Survey Research is fundamental for all quantitative outcome research methodologies and studies. Surveys are used to ask questions to a sample of respondents, using various types such as online polls, online surveys, paper questionnaires, web-intercept surveys , etc. Every small and big organization intends to understand what their customers think about their products and services, how well new features are faring in the market, and other such details.
By conducting survey research, an organization can ask multiple survey questions , collect data from a pool of customers, and analyze this collected data to produce numerical results. It is the first step towards collecting data for any research. You can use single ease questions . A single-ease question is a straightforward query that elicits a concise and uncomplicated response.
This type of research can be conducted with a specific target audience group and also can be conducted across multiple groups along with comparative analysis . A prerequisite for this type of research is that the sample of respondents must have randomly selected members. This way, a researcher can easily maintain the accuracy of the obtained results as a huge variety of respondents will be addressed using random selection.
Traditionally, survey research was conducted face-to-face or via phone calls. Still, with the progress made by online mediums such as email or social media, survey research has also spread to online mediums.There are two types of surveys , either of which can be chosen based on the time in hand and the kind of data required:
Cross-sectional surveys: Cross-sectional surveys are observational surveys conducted in situations where the researcher intends to collect data from a sample of the target population at a given point in time. Researchers can evaluate various variables at a particular time. Data gathered using this type of survey is from people who depict similarity in all variables except the variables which are considered for research . Throughout the survey, this one variable will stay constant.
- Cross-sectional surveys are popular with retail, SMEs, and healthcare industries. Information is garnered without modifying any parameters in the variable ecosystem.
- Multiple samples can be analyzed and compared using a cross-sectional survey research method.
- Multiple variables can be evaluated using this type of survey research.
- The only disadvantage of cross-sectional surveys is that the cause-effect relationship of variables cannot be established as it usually evaluates variables at a particular time and not across a continuous time frame.
Longitudinal surveys: Longitudinal surveys are also observational surveys , but unlike cross-sectional surveys, longitudinal surveys are conducted across various time durations to observe a change in respondent behavior and thought processes. This time can be days, months, years, or even decades. For instance, a researcher planning to analyze the change in buying habits of teenagers over 5 years will conduct longitudinal surveys.
- In cross-sectional surveys, the same variables were evaluated at a given time, and in longitudinal surveys, different variables can be analyzed at different intervals.
- Longitudinal surveys are extensively used in the field of medicine and applied sciences. Apart from these two fields, they are also used to observe a change in the market trend analysis , analyze customer satisfaction, or gain feedback on products/services.
- In situations where the sequence of events is highly essential, longitudinal surveys are used.
- Researchers say that when research subjects need to be thoroughly inspected before concluding, they rely on longitudinal surveys.
02. Correlational Research
A comparison between two entities is invariable. Correlation research is conducted to establish a relationship between two closely-knit entities and how one impacts the other, and what changes are eventually observed. This research method is carried out to give value to naturally occurring relationships, and a minimum of two different groups are required to conduct this quantitative research method successfully. Without assuming various aspects, a relationship between two groups or entities must be established.
Researchers use this quantitative research design to correlate two or more variables using mathematical analysis methods. Patterns, relationships, and trends between variables are concluded as they exist in their original setup. The impact of one of these variables on the other is observed, along with how it changes the relationship between the two variables. Researchers tend to manipulate one of the variables to attain the desired results.
Ideally, it is advised not to make conclusions merely based on correlational research. This is because it is not mandatory that if two variables are in sync that they are interrelated.
Example of Correlational Research Questions :
- The relationship between stress and depression.
- The equation between fame and money.
- The relation between activities in a third-grade class and its students.
03. Causal-comparative Research
This research method mainly depends on the factor of comparison. Also called quasi-experimental research , this quantitative research method is used by researchers to conclude the cause-effect equation between two or more variables, where one variable is dependent on the other independent variable. The independent variable is established but not manipulated, and its impact on the dependent variable is observed. These variables or groups must be formed as they exist in the natural setup. As the dependent and independent variables will always exist in a group, it is advised that the conclusions are carefully established by keeping all the factors in mind.
Causal-comparative research is not restricted to the statistical analysis of two variables but extends to analyzing how various variables or groups change under the influence of the same changes. This research is conducted irrespective of the type of relationship that exists between two or more variables. Statistical analysis plan is used to present the outcome using this quantitative research method.
Example of Causal-Comparative Research Questions:
- The impact of drugs on a teenager. The effect of good education on a freshman. The effect of substantial food provision in the villages of Africa.
04. Experimental Research
Also known as true experimentation, this research method relies on a theory. As the name suggests, experimental research is usually based on one or more theories. This theory has yet to be proven before and is merely a supposition. In experimental research, an analysis is done around proving or disproving the statement. This research method is used in natural sciences. Traditional research methods are more effective than modern techniques.
There can be multiple theories in experimental research. A theory is a statement that can be verified or refuted.
After establishing the statement, efforts are made to understand whether it is valid or invalid. This quantitative research method is mainly used in natural or social sciences as various statements must be proved right or wrong.
- Traditional research methods are more effective than modern techniques.
- Systematic teaching schedules help children who struggle to cope with the course.
- It is a boon to have responsible nursing staff for ailing parents.
B. Data Collection Methodologies
The second major step in primary quantitative research is data collection. Data collection can be divided into sampling methods and data collection using surveys and polls.
01. Data Collection Methodologies: Sampling Methods
There are two main sampling methods for quantitative research: Probability and Non-probability sampling .
Probability sampling: A theory of probability is used to filter individuals from a population and create samples in probability sampling . Participants of a sample are chosen by random selection processes. Each target audience member has an equal opportunity to be selected in the sample.
There are four main types of probability sampling:
- Simple random sampling: As the name indicates, simple random sampling is nothing but a random selection of elements for a sample. This sampling technique is implemented where the target population is considerably large.
- Stratified random sampling: In the stratified random sampling method , a large population is divided into groups (strata), and members of a sample are chosen randomly from these strata. The various segregated strata should ideally not overlap one another.
- Cluster sampling: Cluster sampling is a probability sampling method using which the main segment is divided into clusters, usually using geographic segmentation and demographic segmentation parameters.
- Systematic sampling: Systematic sampling is a technique where the starting point of the sample is chosen randomly, and all the other elements are chosen using a fixed interval. This interval is calculated by dividing the population size by the target sample size.
Non-probability sampling: Non-probability sampling is where the researcher’s knowledge and experience are used to create samples. Because of the researcher’s involvement, not all the target population members have an equal probability of being selected to be a part of a sample.
There are five non-probability sampling models:
- Convenience sampling: In convenience sampling , elements of a sample are chosen only due to one prime reason: their proximity to the researcher. These samples are quick and easy to implement as there is no other parameter of selection involved.
- Consecutive sampling: Consecutive sampling is quite similar to convenience sampling, except for the fact that researchers can choose a single element or a group of samples and conduct research consecutively over a significant period and then perform the same process with other samples.
- Quota sampling: Using quota sampling , researchers can select elements using their knowledge of target traits and personalities to form strata. Members of various strata can then be chosen to be a part of the sample as per the researcher’s understanding.
- Snowball sampling: Snowball sampling is conducted with target audiences who are difficult to contact and get information. It is popular in cases where the target audience for analysis research is rare to put together.
- Judgmental sampling: Judgmental sampling is a non-probability sampling method where samples are created only based on the researcher’s experience and research skill .
02. Data collection methodologies: Using surveys & polls
Once the sample is determined, then either surveys or polls can be distributed to collect the data for quantitative research.
Using surveys for primary quantitative research
A survey is defined as a research method used for collecting data from a pre-defined group of respondents to gain information and insights on various topics of interest. The ease of survey distribution and the wide number of people it can reach depending on the research time and objective makes it one of the most important aspects of conducting quantitative research.
Fundamental levels of measurement – nominal, ordinal, interval, and ratio scales
Four measurement scales are fundamental to creating a multiple-choice question in a survey. They are nominal, ordinal, interval, and ratio measurement scales without the fundamentals of which no multiple-choice questions can be created. Hence, it is crucial to understand these measurement levels to develop a robust survey.
Use of different question types
To conduct quantitative research, close-ended questions must be used in a survey. They can be a mix of multiple question types, including multiple-choice questions like semantic differential scale questions , rating scale questions , etc.
Survey Distribution and Survey Data Collection
In the above, we have seen the process of building a survey along with the research design to conduct primary quantitative research. Survey distribution to collect data is the other important aspect of the survey process. There are different ways of survey distribution. Some of the most commonly used methods are:
- Email: Sending a survey via email is the most widely used and effective survey distribution method. This method’s response rate is high because the respondents know your brand. You can use the QuestionPro email management feature to send out and collect survey responses.
- Buy respondents: Another effective way to distribute a survey and conduct primary quantitative research is to use a sample. Since the respondents are knowledgeable and are on the panel by their own will, responses are much higher.
- Embed survey on a website: Embedding a survey on a website increases a high number of responses as the respondent is already in close proximity to the brand when the survey pops up.
- Social distribution: Using social media to distribute the survey aids in collecting a higher number of responses from the people that are aware of the brand.
- QR code: QuestionPro QR codes store the URL for the survey. You can print/publish this code in magazines, signs, business cards, or on just about any object/medium.
- SMS survey: The SMS survey is a quick and time-effective way to collect a high number of responses.
- Offline Survey App: The QuestionPro App allows users to circulate surveys quickly, and the responses can be collected both online and offline.
Survey example
An example of a survey is a short customer satisfaction (CSAT) survey that can quickly be built and deployed to collect feedback about what the customer thinks about a brand and how satisfied and referenceable the brand is.
Using polls for primary quantitative research
Polls are a method to collect feedback using close-ended questions from a sample. The most commonly used types of polls are election polls and exit polls . Both of these are used to collect data from a large sample size but using basic question types like multiple-choice questions.
C. Data Analysis Techniques
The third aspect of primary quantitative research design is data analysis . After collecting raw data, there must be an analysis of this data to derive statistical inferences from this research. It is important to relate the results to the research objective and establish the statistical relevance of the results.
Remember to consider aspects of research that were not considered for the data collection process and report the difference between what was planned vs. what was actually executed.
It is then required to select precise Statistical Analysis Methods , such as SWOT, Conjoint, Cross-tabulation, etc., to analyze the quantitative data.
- SWOT analysis: SWOT Analysis stands for the acronym of Strengths, Weaknesses, Opportunities, and Threat analysis. Organizations use this statistical analysis technique to evaluate their performance internally and externally to develop effective strategies for improvement.
- Conjoint Analysis: Conjoint Analysis is a market analysis method to learn how individuals make complicated purchasing decisions. Trade-offs are involved in an individual’s daily activities, and these reflect their ability to decide from a complex list of product/service options.
- Cross-tabulation: Cross-tabulation is one of the preliminary statistical market analysis methods which establishes relationships, patterns, and trends within the various parameters of the research study.
- TURF Analysis: TURF Analysis , an acronym for Totally Unduplicated Reach and Frequency Analysis, is executed in situations where the reach of a favorable communication source is to be analyzed along with the frequency of this communication. It is used for understanding the potential of a target market.
Inferential statistics methods such as confidence interval, the margin of error, etc., can then be used to provide results.
Secondary Quantitative Research Methods
Secondary quantitative research or desk research is a research method that involves using already existing data or secondary data. Existing data is summarized and collated to increase the overall effectiveness of the research.
This research method involves collecting quantitative data from existing data sources like the internet, government resources, libraries, research reports, etc. Secondary quantitative research helps to validate the data collected from primary quantitative research and aid in strengthening or proving, or disproving previously collected data.
The following are five popularly used secondary quantitative research methods:
- Data available on the internet: With the high penetration of the internet and mobile devices, it has become increasingly easy to conduct quantitative research using the internet. Information about most research topics is available online, and this aids in boosting the validity of primary quantitative data.
- Government and non-government sources: Secondary quantitative research can also be conducted with the help of government and non-government sources that deal with market research reports. This data is highly reliable and in-depth and hence, can be used to increase the validity of quantitative research design.
- Public libraries: Now a sparingly used method of conducting quantitative research, it is still a reliable source of information, though. Public libraries have copies of important research that was conducted earlier. They are a storehouse of valuable information and documents from which information can be extracted.
- Educational institutions: Educational institutions conduct in-depth research on multiple topics. And hence, the reports that they publish are an important source of validation in quantitative research.
- Commercial information sources: Local newspapers, journals, magazines, radio, and TV stations are great sources to obtain data for secondary quantitative research. These commercial information sources have in-depth, first-hand information on market research, demographic segmentation, and similar subjects.
Quantitative Research Examples
Some examples of quantitative research are:
- A customer satisfaction template can be used if any organization would like to conduct a customer satisfaction (CSAT) survey . Through this kind of survey, an organization can collect quantitative data and metrics on the goodwill of the brand or organization in the customer’s mind based on multiple parameters such as product quality, pricing, customer experience, etc. This data can be collected by asking a net promoter score (NPS) question , matrix table questions, etc. that provide data in the form of numbers that can be analyzed and worked upon.
- Another example of quantitative research is an organization that conducts an event, collecting feedback from attendees about the value they see from the event. By using an event survey , the organization can collect actionable feedback about the satisfaction levels of customers during various phases of the event such as the sales, pre and post-event, the likelihood of recommending the organization to their friends and colleagues, hotel preferences for the future events and other such questions.
What are the Advantages of Quantitative Research?
There are many advantages to quantitative research. Some of the major advantages of why researchers use this method in market research are:
Collect Reliable and Accurate Data:
Quantitative research is a powerful method for collecting reliable and accurate quantitative data. Since data is collected, analyzed, and presented in numbers, the results obtained are incredibly reliable and objective. Numbers do not lie and offer an honest and precise picture of the conducted research without discrepancies. In situations where a researcher aims to eliminate bias and predict potential conflicts, quantitative research is the method of choice.
Quick Data Collection:
Quantitative research involves studying a group of people representing a larger population. Researchers use a survey or another quantitative research method to efficiently gather information from these participants. It makes the process of analyzing the data and identifying patterns faster and more manageable through the use of statistical analysis. This advantage makes quantitative research an attractive option for projects with time constraints.
Wider Scope of Data Analysis:
Quantitative research, thanks to its utilization of statistical methods, offers an extensive range of data collection and analysis. Researchers can explore a broader spectrum of variables and relationships within the data. It can enable a more thorough comprehension of the subject under investigation. This expanded scope is precious when dealing with complex research questions that require in-depth numerical analysis.
Eliminate Bias:
One of the significant advantages of quantitative research is its ability to eliminate bias. This research method leaves no room for personal comments or the biasing of results, as the findings are presented in numerical form. This objectivity makes the results fair and reliable in most cases, reducing the potential for researcher bias or subjectivity.
In summary, quantitative research involves collecting, analyzing, and presenting quantitative data using statistical analysis. It offers numerous advantages, including:
- The collection of reliable and accurate data
- Quick data collection
- A broader scope of data analysis
- The elimination of bias
These advantages makes it a valuable approach in the field of research. When considering the benefits of quantitative research, it’s essential to recognize its strengths in contrast to qualitative methods and its role in collecting and analyzing numerical data for a more comprehensive understanding of research topics.
Best Practices to Conduct Quantitative Research
Here are some best practices for conducting quantitative research:
- Differentiate between quantitative and qualitative: Understand the difference between the two methodologies and apply the one that suits your needs best.
- Choose a suitable sample size: Ensure that you have a sample representative of your population and large enough to be statistically weighty.
- Keep your research goals clear and concise: Know your research goals before you begin data collection to ensure you collect the right amount and the right quantity of data.
- Keep the questions simple: Remember that you will be reaching out to a demographically wide audience. Pose simple questions for your respondents to understand easily.
Quantitative Research vs Qualitative Research
Quantitative research and qualitative research are two distinct approaches to conducting research, each with its own set of methods and objectives. Here’s a comparison of the two:
Quantitative Research
- Objective: The primary goal of quantitative research is to quantify and measure phenomena by collecting numerical data. It aims to test hypotheses, establish patterns, and generalize findings to a larger population.
- Data Collection: Quantitative research employs systematic and standardized approaches for data collection, including techniques like surveys, experiments, and observations that involve predefined variables. It is often collected from a large and representative sample.
- Data Analysis: Data is analyzed using statistical techniques, such as descriptive statistics, inferential statistics, and mathematical modeling. Researchers use statistical tests to draw conclusions and make generalizations based on numerical data.
- Sample Size: Quantitative research often involves larger sample sizes to ensure statistical significance and generalizability.
- Results: The results are typically presented in tables, charts, and statistical summaries, making them highly structured and objective.
- Generalizability: Researchers intentionally structure quantitative research to generate outcomes that can be helpful to a larger population, and they frequently seek to establish causative connections.
- Emphasis on Objectivity: Researchers aim to minimize bias and subjectivity, focusing on replicable and objective findings.
Qualitative Research
- Objective: Qualitative research seeks to gain a deeper understanding of the underlying motivations, behaviors, and experiences of individuals or groups. It explores the context and meaning of phenomena.
- Data Collection: Qualitative research employs adaptable and open-ended techniques for data collection, including methods like interviews, focus groups, observations, and content analysis. It allows participants to express their perspectives in their own words.
- Data Analysis: Data is analyzed through thematic analysis, content analysis, or grounded theory. Researchers focus on identifying patterns, themes, and insights in the data.
- Sample Size: Qualitative research typically involves smaller sample sizes due to the in-depth nature of data collection and analysis.
- Results: Findings are presented in narrative form, often in the participants’ own words. Results are subjective, context-dependent, and provide rich, detailed descriptions.
- Generalizability: Qualitative research does not aim for broad generalizability but focuses on in-depth exploration within a specific context. It provides a detailed understanding of a particular group or situation.
- Emphasis on Subjectivity: Researchers acknowledge the role of subjectivity and the researcher’s influence on the Research Process . Participant perspectives and experiences are central to the findings.
Researchers choose between quantitative and qualitative research methods based on their research objectives and the nature of the research question. Each approach has its advantages and drawbacks, and the decision between them hinges on the particular research objectives and the data needed to address research inquiries effectively.
Quantitative research is a structured way of collecting and analyzing data from various sources. Its purpose is to quantify the problem and understand its extent, seeking results that someone can project to a larger population.
Companies that use quantitative rather than qualitative research typically aim to measure magnitudes and seek objectively interpreted statistical results. So if you want to obtain quantitative data that helps you define the structured cause-and-effect relationship between the research problem and the factors, you should opt for this type of research.
At QuestionPro , we have various Best Data Collection Tools and features to conduct investigations of this type. You can create questionnaires and distribute them through our various methods. We also have sample services or various questions to guarantee the success of your study and the quality of the collected data.
Frequently Asked Questions (FAQs)
Quantitative research is a systematic and structured approach to studying phenomena that involves the collection of measurable data and the application of statistical, mathematical, or computational techniques for analysis.
Quantitative research is characterized by structured tools like surveys, substantial sample sizes, closed-ended questions, reliance on prior studies, data presented numerically, and the ability to generalize findings to the broader population.
The two main methods of quantitative research are Primary quantitative research methods, involving data collection directly from sources, and Secondary quantitative research methods, which utilize existing data for analysis.
1.Surveying to measure employee engagement with numerical rating scales. 2.Analyzing sales data to identify trends in product demand and market share. 4.Examining test scores to assess the impact of a new teaching method on student performance. 4.Using website analytics to track user behavior and conversion rates for an online store.
1.Differentiate between quantitative and qualitative approaches. 2.Choose a representative sample size. 3.Define clear research goals before data collection. 4.Use simple and easily understandable survey questions.
MORE LIKE THIS
User Behavior: What it is, How to Understand, Track & Uses
Sep 24, 2024
Mass Personalization is not Personalization! — Tuesday CX Thoughts
Change Management Questions: How to Design & Ask Questions
Sep 23, 2024
Top 5 Change Management Models to Transform Your Organization
Sep 20, 2024
Other categories
- Academic Research
- Artificial Intelligence
- Assessments
- Brand Awareness
- Case Studies
- Communities
- Consumer Insights
- Customer effort score
- Customer Engagement
- Customer Experience
- Customer Loyalty
- Customer Research
- Customer Satisfaction
- Employee Benefits
- Employee Engagement
- Employee Retention
- Friday Five
- General Data Protection Regulation
- Insights Hub
- Life@QuestionPro
- Market Research
- Mobile diaries
- Mobile Surveys
- New Features
- Online Communities
- Question Types
- Questionnaire
- QuestionPro Products
- Release Notes
- Research Tools and Apps
- Revenue at Risk
- Survey Templates
- Training Tips
- Tuesday CX Thoughts (TCXT)
- Uncategorized
- What’s Coming Up
- Workforce Intelligence
Educational resources and simple solutions for your research journey
What is Quantitative Research? Definition, Methods, Types, and Examples
If you’re wondering what is quantitative research and whether this methodology works for your research study, you’re not alone. If you want a simple quantitative research definition , then it’s enough to say that this is a method undertaken by researchers based on their study requirements. However, to select the most appropriate research for their study type, researchers should know all the methods available.
Selecting the right research method depends on a few important criteria, such as the research question, study type, time, costs, data availability, and availability of respondents. There are two main types of research methods— quantitative research and qualitative research. The purpose of quantitative research is to validate or test a theory or hypothesis and that of qualitative research is to understand a subject or event or identify reasons for observed patterns.
Quantitative research methods are used to observe events that affect a particular group of individuals, which is the sample population. In this type of research, diverse numerical data are collected through various methods and then statistically analyzed to aggregate the data, compare them, or show relationships among the data. Quantitative research methods broadly include questionnaires, structured observations, and experiments.
Here are two quantitative research examples:
- Satisfaction surveys sent out by a company regarding their revamped customer service initiatives. Customers are asked to rate their experience on a rating scale of 1 (poor) to 5 (excellent).
- A school has introduced a new after-school program for children, and a few months after commencement, the school sends out feedback questionnaires to the parents of the enrolled children. Such questionnaires usually include close-ended questions that require either definite answers or a Yes/No option. This helps in a quick, overall assessment of the program’s outreach and success.
Table of Contents
What is quantitative research ? 1,2
The steps shown in the figure can be grouped into the following broad steps:
- Theory : Define the problem area or area of interest and create a research question.
- Hypothesis : Develop a hypothesis based on the research question. This hypothesis will be tested in the remaining steps.
- Research design : In this step, the most appropriate quantitative research design will be selected, including deciding on the sample size, selecting respondents, identifying research sites, if any, etc.
- Data collection : This process could be extensive based on your research objective and sample size.
- Data analysis : Statistical analysis is used to analyze the data collected. The results from the analysis help in either supporting or rejecting your hypothesis.
- Present results : Based on the data analysis, conclusions are drawn, and results are presented as accurately as possible.
Quantitative research characteristics 4
- Large sample size : This ensures reliability because this sample represents the target population or market. Due to the large sample size, the outcomes can be generalized to the entire population as well, making this one of the important characteristics of quantitative research .
- Structured data and measurable variables: The data are numeric and can be analyzed easily. Quantitative research involves the use of measurable variables such as age, salary range, highest education, etc.
- Easy-to-use data collection methods : The methods include experiments, controlled observations, and questionnaires and surveys with a rating scale or close-ended questions, which require simple and to-the-point answers; are not bound by geographical regions; and are easy to administer.
- Data analysis : Structured and accurate statistical analysis methods using software applications such as Excel, SPSS, R. The analysis is fast, accurate, and less effort intensive.
- Reliable : The respondents answer close-ended questions, their responses are direct without ambiguity and yield numeric outcomes, which are therefore highly reliable.
- Reusable outcomes : This is one of the key characteristics – outcomes of one research can be used and replicated in other research as well and is not exclusive to only one study.
Quantitative research methods 5
Quantitative research methods are classified into two types—primary and secondary.
Primary quantitative research method:
In this type of quantitative research , data are directly collected by the researchers using the following methods.
– Survey research : Surveys are the easiest and most commonly used quantitative research method . They are of two types— cross-sectional and longitudinal.
->Cross-sectional surveys are specifically conducted on a target population for a specified period, that is, these surveys have a specific starting and ending time and researchers study the events during this period to arrive at conclusions. The main purpose of these surveys is to describe and assess the characteristics of a population. There is one independent variable in this study, which is a common factor applicable to all participants in the population, for example, living in a specific city, diagnosed with a specific disease, of a certain age group, etc. An example of a cross-sectional survey is a study to understand why individuals residing in houses built before 1979 in the US are more susceptible to lead contamination.
->Longitudinal surveys are conducted at different time durations. These surveys involve observing the interactions among different variables in the target population, exposing them to various causal factors, and understanding their effects across a longer period. These studies are helpful to analyze a problem in the long term. An example of a longitudinal study is the study of the relationship between smoking and lung cancer over a long period.
– Descriptive research : Explains the current status of an identified and measurable variable. Unlike other types of quantitative research , a hypothesis is not needed at the beginning of the study and can be developed even after data collection. This type of quantitative research describes the characteristics of a problem and answers the what, when, where of a problem. However, it doesn’t answer the why of the problem and doesn’t explore cause-and-effect relationships between variables. Data from this research could be used as preliminary data for another study. Example: A researcher undertakes a study to examine the growth strategy of a company. This sample data can be used by other companies to determine their own growth strategy.
– Correlational research : This quantitative research method is used to establish a relationship between two variables using statistical analysis and analyze how one affects the other. The research is non-experimental because the researcher doesn’t control or manipulate any of the variables. At least two separate sample groups are needed for this research. Example: Researchers studying a correlation between regular exercise and diabetes.
– Causal-comparative research : This type of quantitative research examines the cause-effect relationships in retrospect between a dependent and independent variable and determines the causes of the already existing differences between groups of people. This is not a true experiment because it doesn’t assign participants to groups randomly. Example: To study the wage differences between men and women in the same role. For this, already existing wage information is analyzed to understand the relationship.
– Experimental research : This quantitative research method uses true experiments or scientific methods for determining a cause-effect relation between variables. It involves testing a hypothesis through experiments, in which one or more independent variables are manipulated and then their effect on dependent variables are studied. Example: A researcher studies the importance of a drug in treating a disease by administering the drug in few patients and not administering in a few.
The following data collection methods are commonly used in primary quantitative research :
- Sampling : The most common type is probability sampling, in which a sample is chosen from a larger population using some form of random selection, that is, every member of the population has an equal chance of being selected. The different types of probability sampling are—simple random, systematic, stratified, and cluster sampling.
- Interviews : These are commonly telephonic or face-to-face.
- Observations : Structured observations are most commonly used in quantitative research . In this method, researchers make observations about specific behaviors of individuals in a structured setting.
- Document review : Reviewing existing research or documents to collect evidence for supporting the quantitative research .
- Surveys and questionnaires : Surveys can be administered both online and offline depending on the requirement and sample size.
The data collected can be analyzed in several ways in quantitative research , as listed below:
- Cross-tabulation —Uses a tabular format to draw inferences among collected data
- MaxDiff analysis —Gauges the preferences of the respondents
- TURF analysis —Total Unduplicated Reach and Frequency Analysis; helps in determining the market strategy for a business
- Gap analysis —Identify gaps in attaining the desired results
- SWOT analysis —Helps identify strengths, weaknesses, opportunities, and threats of a product, service, or organization
- Text analysis —Used for interpreting unstructured data
Secondary quantitative research methods :
This method involves conducting research using already existing or secondary data. This method is less effort intensive and requires lesser time. However, researchers should verify the authenticity and recency of the sources being used and ensure their accuracy.
The main sources of secondary data are:
- The Internet
- Government and non-government sources
- Public libraries
- Educational institutions
- Commercial information sources such as newspapers, journals, radio, TV
When to use quantitative research 6
Here are some simple ways to decide when to use quantitative research . Use quantitative research to:
- recommend a final course of action
- find whether a consensus exists regarding a particular subject
- generalize results to a larger population
- determine a cause-and-effect relationship between variables
- describe characteristics of specific groups of people
- test hypotheses and examine specific relationships
- identify and establish size of market segments
A research case study to understand when to use quantitative research 7
Context: A study was undertaken to evaluate a major innovation in a hospital’s design, in terms of workforce implications and impact on patient and staff experiences of all single-room hospital accommodations. The researchers undertook a mixed methods approach to answer their research questions. Here, we focus on the quantitative research aspect.
Research questions : What are the advantages and disadvantages for the staff as a result of the hospital’s move to the new design with all single-room accommodations? Did the move affect staff experience and well-being and improve their ability to deliver high-quality care?
Method: The researchers obtained quantitative data from three sources:
- Staff activity (task time distribution): Each staff member was shadowed by a researcher who observed each task undertaken by the staff, and logged the time spent on each activity.
- Staff travel distances : The staff were requested to wear pedometers, which recorded the distances covered.
- Staff experience surveys : Staff were surveyed before and after the move to the new hospital design.
Results of quantitative research : The following observations were made based on quantitative data analysis:
- The move to the new design did not result in a significant change in the proportion of time spent on different activities.
- Staff activity events observed per session were higher after the move, and direct care and professional communication events per hour decreased significantly, suggesting fewer interruptions and less fragmented care.
- A significant increase in medication tasks among the recorded events suggests that medication administration was integrated into patient care activities.
- Travel distances increased for all staff, with highest increases for staff in the older people’s ward and surgical wards.
- Ratings for staff toilet facilities, locker facilities, and space at staff bases were higher but those for social interaction and natural light were lower.
Advantages of quantitative research 1,2
When choosing the right research methodology, also consider the advantages of quantitative research and how it can impact your study.
- Quantitative research methods are more scientific and rational. They use quantifiable data leading to objectivity in the results and avoid any chances of ambiguity.
- This type of research uses numeric data so analysis is relatively easier .
- In most cases, a hypothesis is already developed and quantitative research helps in testing and validatin g these constructed theories based on which researchers can make an informed decision about accepting or rejecting their theory.
- The use of statistical analysis software ensures quick analysis of large volumes of data and is less effort intensive.
- Higher levels of control can be applied to the research so the chances of bias can be reduced.
- Quantitative research is based on measured value s, facts, and verifiable information so it can be easily checked or replicated by other researchers leading to continuity in scientific research.
Disadvantages of quantitative research 1,2
Quantitative research may also be limiting; take a look at the disadvantages of quantitative research.
- Experiments are conducted in controlled settings instead of natural settings and it is possible for researchers to either intentionally or unintentionally manipulate the experiment settings to suit the results they desire.
- Participants must necessarily give objective answers (either one- or two-word, or yes or no answers) and the reasons for their selection or the context are not considered.
- Inadequate knowledge of statistical analysis methods may affect the results and their interpretation.
- Although statistical analysis indicates the trends or patterns among variables, the reasons for these observed patterns cannot be interpreted and the research may not give a complete picture.
- Large sample sizes are needed for more accurate and generalizable analysis .
- Quantitative research cannot be used to address complex issues.
Frequently asked questions on quantitative research
Q: What is the difference between quantitative research and qualitative research? 1
A: The following table lists the key differences between quantitative research and qualitative research, some of which may have been mentioned earlier in the article.
Purpose and design | ||
Research question | ||
Sample size | Large | Small |
Data | ||
Data collection method | Experiments, controlled observations, questionnaires and surveys with a rating scale or close-ended questions. The methods can be experimental, quasi-experimental, descriptive, or correlational. | Semi-structured interviews/surveys with open-ended questions, document study/literature reviews, focus groups, case study research, ethnography |
Data analysis |
Q: What is the difference between reliability and validity? 8,9
A: The term reliability refers to the consistency of a research study. For instance, if a food-measuring weighing scale gives different readings every time the same quantity of food is measured then that weighing scale is not reliable. If the findings in a research study are consistent every time a measurement is made, then the study is considered reliable. However, it is usually unlikely to obtain the exact same results every time because some contributing variables may change. In such cases, a correlation coefficient is used to assess the degree of reliability. A strong positive correlation between the results indicates reliability.
Validity can be defined as the degree to which a tool actually measures what it claims to measure. It helps confirm the credibility of your research and suggests that the results may be generalizable. In other words, it measures the accuracy of the research.
The following table gives the key differences between reliability and validity.
Importance | Refers to the consistency of a measure | Refers to the accuracy of a measure |
Ease of achieving | Easier, yields results faster | Involves more analysis, more difficult to achieve |
Assessment method | By examining the consistency of outcomes over time, between various observers, and within the test | By comparing the accuracy of the results with accepted theories and other measurements of the same idea |
Relationship | Unreliable measurements typically cannot be valid | Valid measurements are also reliable |
Types | Test-retest reliability, internal consistency, inter-rater reliability | Content validity, criterion validity, face validity, construct validity |
Q: What is mixed methods research? 10
A: A mixed methods approach combines the characteristics of both quantitative research and qualitative research in the same study. This method allows researchers to validate their findings, verify if the results observed using both methods are complementary, and explain any unexpected results obtained from one method by using the other method. A mixed methods research design is useful in case of research questions that cannot be answered by either quantitative research or qualitative research alone. However, this method could be more effort- and cost-intensive because of the requirement of more resources. The figure 3 shows some basic mixed methods research designs that could be used.
Thus, quantitative research is the appropriate method for testing your hypotheses and can be used either alone or in combination with qualitative research per your study requirements. We hope this article has provided an insight into the various facets of quantitative research , including its different characteristics, advantages, and disadvantages, and a few tips to quickly understand when to use this research method.
References
- Qualitative vs quantitative research: Differences, examples, & methods. Simply Psychology. Accessed Feb 28, 2023. https://simplypsychology.org/qualitative-quantitative.html#Quantitative-Research
- Your ultimate guide to quantitative research. Qualtrics. Accessed February 28, 2023. https://www.qualtrics.com/uk/experience-management/research/quantitative-research/
- The steps of quantitative research. Revise Sociology. Accessed March 1, 2023. https://revisesociology.com/2017/11/26/the-steps-of-quantitative-research/
- What are the characteristics of quantitative research? Marketing91. Accessed March 1, 2023. https://www.marketing91.com/characteristics-of-quantitative-research/
- Quantitative research: Types, characteristics, methods, & examples. ProProfs Survey Maker. Accessed February 28, 2023. https://www.proprofssurvey.com/blog/quantitative-research/#Characteristics_of_Quantitative_Research
- Qualitative research isn’t as scientific as quantitative methods. Kmusial blog. Accessed March 5, 2023. https://kmusial.wordpress.com/2011/11/25/qualitative-research-isnt-as-scientific-as-quantitative-methods/
- Maben J, Griffiths P, Penfold C, et al. Evaluating a major innovation in hospital design: workforce implications and impact on patient and staff experiences of all single room hospital accommodation. Southampton (UK): NIHR Journals Library; 2015 Feb. (Health Services and Delivery Research, No. 3.3.) Chapter 5, Case study quantitative data findings. Accessed March 6, 2023. https://www.ncbi.nlm.nih.gov/books/NBK274429/
- McLeod, S. A. (2007). What is reliability? Simply Psychology. www.simplypsychology.org/reliability.html
- Reliability vs validity: Differences & examples. Accessed March 5, 2023. https://statisticsbyjim.com/basics/reliability-vs-validity/
- Mixed methods research. Community Engagement Program. Harvard Catalyst. Accessed February 28, 2023. https://catalyst.harvard.edu/community-engagement/mmr
Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.
Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place – Get All Access now starting at just $14 a month !
Related Posts
How to get a PhD in Computer Science?
Editage Plus: Tools and Pricing
Research Aims, Objectives & Questions
By: David Phair (PhD) and Alexandra Shaeffer (PhD) | June 2022
T he research aims , objectives and research questions (collectively called the “golden thread”) are arguably the most important thing you need to get right when you’re crafting a research proposal , dissertation or thesis . We receive questions almost every day about this “holy trinity” of research and there’s certainly a lot of confusion out there, so we’ve crafted this post to help you navigate your way through the fog.
Overview: The Golden Thread
- What is the golden thread
- What are research aims ( examples )
- What are research objectives ( examples )
- What are research questions ( examples )
- The importance of alignment in the golden thread
What is the “golden thread”?
The golden thread simply refers to the collective research aims , research objectives , and research questions for any given project (i.e., a dissertation, thesis, or research paper ). These three elements are bundled together because it’s extremely important that they align with each other, and that the entire research project aligns with them.
Importantly, the golden thread needs to weave its way through the entirety of any research project , from start to end. In other words, it needs to be very clearly defined right at the beginning of the project (the topic ideation and proposal stage) and it needs to inform almost every decision throughout the rest of the project. For example, your research design and methodology will be heavily influenced by the golden thread (we’ll explain this in more detail later), as well as your literature review.
The research aims, objectives and research questions (the golden thread) define the focus and scope ( the delimitations ) of your research project. In other words, they help ringfence your dissertation or thesis to a relatively narrow domain, so that you can “go deep” and really dig into a specific problem or opportunity. They also help keep you on track , as they act as a litmus test for relevance. In other words, if you’re ever unsure whether to include something in your document, simply ask yourself the question, “does this contribute toward my research aims, objectives or questions?”. If it doesn’t, chances are you can drop it.
Alright, enough of the fluffy, conceptual stuff. Let’s get down to business and look at what exactly the research aims, objectives and questions are and outline a few examples to bring these concepts to life.
Research Aims: What are they?
Simply put, the research aim(s) is a statement that reflects the broad overarching goal (s) of the research project. Research aims are fairly high-level (low resolution) as they outline the general direction of the research and what it’s trying to achieve .
Research Aims: Examples
True to the name, research aims usually start with the wording “this research aims to…”, “this research seeks to…”, and so on. For example:
“This research aims to explore employee experiences of digital transformation in retail HR.” “This study sets out to assess the interaction between student support and self-care on well-being in engineering graduate students”
As you can see, these research aims provide a high-level description of what the study is about and what it seeks to achieve. They’re not hyper-specific or action-oriented, but they’re clear about what the study’s focus is and what is being investigated.
Need a helping hand?
Research Objectives: What are they?
The research objectives take the research aims and make them more practical and actionable . In other words, the research objectives showcase the steps that the researcher will take to achieve the research aims.
The research objectives need to be far more specific (higher resolution) and actionable than the research aims. In fact, it’s always a good idea to craft your research objectives using the “SMART” criteria. In other words, they should be specific, measurable, achievable, relevant and time-bound”.
Research Objectives: Examples
Let’s look at two examples of research objectives. We’ll stick with the topic and research aims we mentioned previously.
For the digital transformation topic:
To observe the retail HR employees throughout the digital transformation. To assess employee perceptions of digital transformation in retail HR. To identify the barriers and facilitators of digital transformation in retail HR.
And for the student wellness topic:
To determine whether student self-care predicts the well-being score of engineering graduate students. To determine whether student support predicts the well-being score of engineering students. To assess the interaction between student self-care and student support when predicting well-being in engineering graduate students.
As you can see, these research objectives clearly align with the previously mentioned research aims and effectively translate the low-resolution aims into (comparatively) higher-resolution objectives and action points . They give the research project a clear focus and present something that resembles a research-based “to-do” list.
Research Questions: What are they?
Finally, we arrive at the all-important research questions. The research questions are, as the name suggests, the key questions that your study will seek to answer . Simply put, they are the core purpose of your dissertation, thesis, or research project. You’ll present them at the beginning of your document (either in the introduction chapter or literature review chapter) and you’ll answer them at the end of your document (typically in the discussion and conclusion chapters).
The research questions will be the driving force throughout the research process. For example, in the literature review chapter, you’ll assess the relevance of any given resource based on whether it helps you move towards answering your research questions. Similarly, your methodology and research design will be heavily influenced by the nature of your research questions. For instance, research questions that are exploratory in nature will usually make use of a qualitative approach, whereas questions that relate to measurement or relationship testing will make use of a quantitative approach.
Let’s look at some examples of research questions to make this more tangible.
Research Questions: Examples
Again, we’ll stick with the research aims and research objectives we mentioned previously.
For the digital transformation topic (which would be qualitative in nature):
How do employees perceive digital transformation in retail HR? What are the barriers and facilitators of digital transformation in retail HR?
And for the student wellness topic (which would be quantitative in nature):
Does student self-care predict the well-being scores of engineering graduate students? Does student support predict the well-being scores of engineering students? Do student self-care and student support interact when predicting well-being in engineering graduate students?
You’ll probably notice that there’s quite a formulaic approach to this. In other words, the research questions are basically the research objectives “converted” into question format. While that is true most of the time, it’s not always the case. For example, the first research objective for the digital transformation topic was more or less a step on the path toward the other objectives, and as such, it didn’t warrant its own research question.
So, don’t rush your research questions and sloppily reword your objectives as questions. Carefully think about what exactly you’re trying to achieve (i.e. your research aim) and the objectives you’ve set out, then craft a set of well-aligned research questions . Also, keep in mind that this can be a somewhat iterative process , where you go back and tweak research objectives and aims to ensure tight alignment throughout the golden thread.
The importance of strong alignment
Alignment is the keyword here and we have to stress its importance . Simply put, you need to make sure that there is a very tight alignment between all three pieces of the golden thread. If your research aims and research questions don’t align, for example, your project will be pulling in different directions and will lack focus . This is a common problem students face and can cause many headaches (and tears), so be warned.
Take the time to carefully craft your research aims, objectives and research questions before you run off down the research path. Ideally, get your research supervisor/advisor to review and comment on your golden thread before you invest significant time into your project, and certainly before you start collecting data .
Recap: The golden thread
In this post, we unpacked the golden thread of research, consisting of the research aims , research objectives and research questions . You can jump back to any section using the links below.
As always, feel free to leave a comment below – we always love to hear from you. Also, if you’re interested in 1-on-1 support, take a look at our private coaching service here.
You Might Also Like:
How To Review & Understand Academic Literature Quickly
Learn how to fast-track your literature review by reading with intention and clarity. Dr E and Amy Murdock explain how.
Dissertation Writing Services: Far Worse Than You Think
Thinking about using a dissertation or thesis writing service? You might want to reconsider that move. Here’s what you need to know.
Triangulation: The Ultimate Credibility Enhancer
Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.
The Harsh Truths Of Academic Research
Dr. Ethar Al-Saraf and Dr. Amy Murdock dive into the darker truths of academic research, so that you’re well prepared for reality.
Dissertation Paralysis: How To Get Unstuck
In this episode of the podcast, Dr. Ethar and Dr. Amy Murdock dive into how to get unstuck when you’re facing dissertation paralysis
📄 FREE TEMPLATES
Research Topic Ideation
Proposal Writing
Literature Review
Methodology & Analysis
Academic Writing
Referencing & Citing
Apps, Tools & Tricks
The Grad Coach Podcast
41 Comments
Thank you very much for your great effort put. As an Undergraduate taking Demographic Research & Methodology, I’ve been trying so hard to understand clearly what is a Research Question, Research Aim and the Objectives in a research and the relationship between them etc. But as for now I’m thankful that you’ve solved my problem.
Well appreciated. This has helped me greatly in doing my dissertation.
An so delighted with this wonderful information thank you a lot.
so impressive i have benefited a lot looking forward to learn more on research.
I am very happy to have carefully gone through this well researched article.
Infact,I used to be phobia about anything research, because of my poor understanding of the concepts.
Now,I get to know that my research question is the same as my research objective(s) rephrased in question format.
I please I would need a follow up on the subject,as I intends to join the team of researchers. Thanks once again.
Thanks so much. This was really helpful.
I know you pepole have tried to break things into more understandable and easy format. And God bless you. Keep it up
i found this document so useful towards my study in research methods. thanks so much.
This is my 2nd read topic in your course and I should commend the simplified explanations of each part. I’m beginning to understand and absorb the use of each part of a dissertation/thesis. I’ll keep on reading your free course and might be able to avail the training course! Kudos!
Thank you! Better put that my lecture and helped to easily understand the basics which I feel often get brushed over when beginning dissertation work.
This is quite helpful. I like how the Golden thread has been explained and the needed alignment.
This is quite helpful. I really appreciate!
The article made it simple for researcher students to differentiate between three concepts.
Very innovative and educational in approach to conducting research.
I am very impressed with all these terminology, as I am a fresh student for post graduate, I am highly guided and I promised to continue making consultation when the need arise. Thanks a lot.
A very helpful piece. thanks, I really appreciate it .
Very well explained, and it might be helpful to many people like me.
Wish i had found this (and other) resource(s) at the beginning of my PhD journey… not in my writing up year… 😩 Anyways… just a quick question as i’m having some issues ordering my “golden thread”…. does it matter in what order you mention them? i.e., is it always first aims, then objectives, and finally the questions? or can you first mention the research questions and then the aims and objectives?
Thank you for a very simple explanation that builds upon the concepts in a very logical manner. Just prior to this, I read the research hypothesis article, which was equally very good. This met my primary objective.
My secondary objective was to understand the difference between research questions and research hypothesis, and in which context to use which one. However, I am still not clear on this. Can you kindly please guide?
In research, a research question is a clear and specific inquiry that the researcher wants to answer, while a research hypothesis is a tentative statement or prediction about the relationship between variables or the expected outcome of the study. Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while hypotheses provide a focus for testing in the study.
Exactly what I need in this research journey, I look forward to more of your coaching videos.
This helped a lot. Thanks so much for the effort put into explaining it.
What data source in writing dissertation/Thesis requires?
What is data source covers when writing dessertation/thesis
This is quite useful thanks
I’m excited and thankful. I got so much value which will help me progress in my thesis.
where are the locations of the reserch statement, research objective and research question in a reserach paper? Can you write an ouline that defines their places in the researh paper?
Very helpful and important tips on Aims, Objectives and Questions.
Thank you so much for making research aim, research objectives and research question so clear. This will be helpful to me as i continue with my thesis.
Thanks much for this content. I learned a lot. And I am inspired to learn more. I am still struggling with my preparation for dissertation outline/proposal. But I consistently follow contents and tutorials and the new FB of GRAD Coach. Hope to really become confident in writing my dissertation and successfully defend it.
As a researcher and lecturer, I find splitting research goals into research aims, objectives, and questions is unnecessarily bureaucratic and confusing for students. For most biomedical research projects, including ‘real research’, 1-3 research questions will suffice (numbers may differ by discipline).
Awesome! Very important resources and presented in an informative way to easily understand the golden thread. Indeed, thank you so much.
Well explained
The blog article on research aims, objectives, and questions by Grad Coach is a clear and insightful guide that aligns with my experiences in academic research. The article effectively breaks down the often complex concepts of research aims and objectives, providing a straightforward and accessible explanation. Drawing from my own research endeavors, I appreciate the practical tips offered, such as the need for specificity and clarity when formulating research questions. The article serves as a valuable resource for students and researchers, offering a concise roadmap for crafting well-defined research goals and objectives. Whether you’re a novice or an experienced researcher, this article provides practical insights that contribute to the foundational aspects of a successful research endeavor.
A great thanks for you. it is really amazing explanation. I grasp a lot and one step up to research knowledge.
I really found these tips helpful. Thank you very much Grad Coach.
I found this article helpful. Thanks for sharing this.
thank you so much, the explanation and examples are really helpful
This is a well researched and superbly written article for learners of research methods at all levels in the research topic from conceptualization to research findings and conclusions. I highly recommend this material to university graduate students. As an instructor of advanced research methods for PhD students, I have confirmed that I was giving the right guidelines for the degree they are undertaking.
Submit a Comment Cancel reply
Your email address will not be published. Required fields are marked *
Save my name, email, and website in this browser for the next time I comment.
Submit Comment
- Print Friendly
Have a language expert improve your writing
Run a free plagiarism check in 10 minutes, automatically generate references for free.
- Knowledge Base
- Methodology
- What Is Quantitative Research? | Definition & Methods
What Is Quantitative Research? | Definition & Methods
Published on 4 April 2022 by Pritha Bhandari . Revised on 10 October 2022.
Quantitative research is the process of collecting and analysing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalise results to wider populations.
Quantitative research is the opposite of qualitative research , which involves collecting and analysing non-numerical data (e.g. text, video, or audio).
Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.
- What is the demographic makeup of Singapore in 2020?
- How has the average temperature changed globally over the last century?
- Does environmental pollution affect the prevalence of honey bees?
- Does working from home increase productivity for people with long commutes?
Table of contents
Quantitative research methods, quantitative data analysis, advantages of quantitative research, disadvantages of quantitative research, frequently asked questions about quantitative research.
You can use quantitative research methods for descriptive, correlational or experimental research.
- In descriptive research , you simply seek an overall summary of your study variables.
- In correlational research , you investigate relationships between your study variables.
- In experimental research , you systematically examine whether there is a cause-and-effect relationship between variables.
Correlational and experimental research can both be used to formally test hypotheses , or predictions, using statistics. The results may be generalised to broader populations based on the sampling method used.
To collect quantitative data, you will often need to use operational definitions that translate abstract concepts (e.g., mood) into observable and quantifiable measures (e.g., self-ratings of feelings and energy levels).
Research method | How to use | Example |
---|---|---|
Control or manipulate an to measure its effect on a dependent variable. | To test whether an intervention can reduce procrastination in college students, you give equal-sized groups either a procrastination intervention or a comparable task. You compare self-ratings of procrastination behaviors between the groups after the intervention. | |
Ask questions of a group of people in-person, over-the-phone or online. | You distribute with rating scales to first-year international college students to investigate their experiences of culture shock. | |
(Systematic) observation | Identify a behavior or occurrence of interest and monitor it in its natural setting. | To study college classroom participation, you sit in on classes to observe them, counting and recording the prevalence of active and passive behaviors by students from different backgrounds. |
Secondary research | Collect data that has been gathered for other purposes e.g., national surveys or historical records. | To assess whether attitudes towards climate change have changed since the 1980s, you collect relevant questionnaire data from widely available . |
Prevent plagiarism, run a free check.
Once data is collected, you may need to process it before it can be analysed. For example, survey and test data may need to be transformed from words to numbers. Then, you can use statistical analysis to answer your research questions .
Descriptive statistics will give you a summary of your data and include measures of averages and variability. You can also use graphs, scatter plots and frequency tables to visualise your data and check for any trends or outliers.
Using inferential statistics , you can make predictions or generalisations based on your data. You can test your hypothesis or use your sample data to estimate the population parameter .
You can also assess the reliability and validity of your data collection methods to indicate how consistently and accurately your methods actually measured what you wanted them to.
Quantitative research is often used to standardise data collection and generalise findings . Strengths of this approach include:
- Replication
Repeating the study is possible because of standardised data collection protocols and tangible definitions of abstract concepts.
- Direct comparisons of results
The study can be reproduced in other cultural settings, times or with different groups of participants. Results can be compared statistically.
- Large samples
Data from large samples can be processed and analysed using reliable and consistent procedures through quantitative data analysis.
- Hypothesis testing
Using formalised and established hypothesis testing procedures means that you have to carefully consider and report your research variables, predictions, data collection and testing methods before coming to a conclusion.
Despite the benefits of quantitative research, it is sometimes inadequate in explaining complex research topics. Its limitations include:
- Superficiality
Using precise and restrictive operational definitions may inadequately represent complex concepts. For example, the concept of mood may be represented with just a number in quantitative research, but explained with elaboration in qualitative research.
- Narrow focus
Predetermined variables and measurement procedures can mean that you ignore other relevant observations.
- Structural bias
Despite standardised procedures, structural biases can still affect quantitative research. Missing data , imprecise measurements or inappropriate sampling methods are biases that can lead to the wrong conclusions.
- Lack of context
Quantitative research often uses unnatural settings like laboratories or fails to consider historical and cultural contexts that may affect data collection and results.
Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.
Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.
In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .
Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.
Operationalisation means turning abstract conceptual ideas into measurable observations.
For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.
Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.
Reliability and validity are both about how well a method measures something:
- Reliability refers to the consistency of a measure (whether the results can be reproduced under the same conditions).
- Validity refers to the accuracy of a measure (whether the results really do represent what they are supposed to measure).
If you are doing experimental research , you also have to consider the internal and external validity of your experiment.
Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.
Cite this Scribbr article
If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.
Bhandari, P. (2022, October 10). What Is Quantitative Research? | Definition & Methods. Scribbr. Retrieved 23 September 2024, from https://www.scribbr.co.uk/research-methods/introduction-to-quantitative-research/
Is this article helpful?
Pritha Bhandari
Have a language expert improve your writing
Run a free plagiarism check in 10 minutes, generate accurate citations for free.
- Knowledge Base
Methodology
- Qualitative vs. Quantitative Research | Differences, Examples & Methods
Qualitative vs. Quantitative Research | Differences, Examples & Methods
Published on April 12, 2019 by Raimo Streefkerk . Revised on June 22, 2023.
When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Both are important for gaining different kinds of knowledge.
Common quantitative methods include experiments, observations recorded as numbers, and surveys with closed-ended questions.
Quantitative research is at risk for research biases including information bias , omitted variable bias , sampling bias , or selection bias . Qualitative research Qualitative research is expressed in words . It is used to understand concepts, thoughts or experiences. This type of research enables you to gather in-depth insights on topics that are not well understood.
Common qualitative methods include interviews with open-ended questions, observations described in words, and literature reviews that explore concepts and theories.
Table of contents
The differences between quantitative and qualitative research, data collection methods, when to use qualitative vs. quantitative research, how to analyze qualitative and quantitative data, other interesting articles, frequently asked questions about qualitative and quantitative research.
Quantitative and qualitative research use different research methods to collect and analyze data, and they allow you to answer different kinds of research questions.
Quantitative and qualitative data can be collected using various methods. It is important to use a data collection method that will help answer your research question(s).
Many data collection methods can be either qualitative or quantitative. For example, in surveys, observational studies or case studies , your data can be represented as numbers (e.g., using rating scales or counting frequencies) or as words (e.g., with open-ended questions or descriptions of what you observe).
However, some methods are more commonly used in one type or the other.
Quantitative data collection methods
- Surveys : List of closed or multiple choice questions that is distributed to a sample (online, in person, or over the phone).
- Experiments : Situation in which different types of variables are controlled and manipulated to establish cause-and-effect relationships.
- Observations : Observing subjects in a natural environment where variables can’t be controlled.
Qualitative data collection methods
- Interviews : Asking open-ended questions verbally to respondents.
- Focus groups : Discussion among a group of people about a topic to gather opinions that can be used for further research.
- Ethnography : Participating in a community or organization for an extended period of time to closely observe culture and behavior.
- Literature review : Survey of published works by other authors.
A rule of thumb for deciding whether to use qualitative or quantitative data is:
- Use quantitative research if you want to confirm or test something (a theory or hypothesis )
- Use qualitative research if you want to understand something (concepts, thoughts, experiences)
For most research topics you can choose a qualitative, quantitative or mixed methods approach . Which type you choose depends on, among other things, whether you’re taking an inductive vs. deductive research approach ; your research question(s) ; whether you’re doing experimental , correlational , or descriptive research ; and practical considerations such as time, money, availability of data, and access to respondents.
Quantitative research approach
You survey 300 students at your university and ask them questions such as: “on a scale from 1-5, how satisfied are your with your professors?”
You can perform statistical analysis on the data and draw conclusions such as: “on average students rated their professors 4.4”.
Qualitative research approach
You conduct in-depth interviews with 15 students and ask them open-ended questions such as: “How satisfied are you with your studies?”, “What is the most positive aspect of your study program?” and “What can be done to improve the study program?”
Based on the answers you get you can ask follow-up questions to clarify things. You transcribe all interviews using transcription software and try to find commonalities and patterns.
Mixed methods approach
You conduct interviews to find out how satisfied students are with their studies. Through open-ended questions you learn things you never thought about before and gain new insights. Later, you use a survey to test these insights on a larger scale.
It’s also possible to start with a survey to find out the overall trends, followed by interviews to better understand the reasons behind the trends.
Qualitative or quantitative data by itself can’t prove or demonstrate anything, but has to be analyzed to show its meaning in relation to the research questions. The method of analysis differs for each type of data.
Analyzing quantitative data
Quantitative data is based on numbers. Simple math or more advanced statistical analysis is used to discover commonalities or patterns in the data. The results are often reported in graphs and tables.
Applications such as Excel, SPSS, or R can be used to calculate things like:
- Average scores ( means )
- The number of times a particular answer was given
- The correlation or causation between two or more variables
- The reliability and validity of the results
Analyzing qualitative data
Qualitative data is more difficult to analyze than quantitative data. It consists of text, images or videos instead of numbers.
Some common approaches to analyzing qualitative data include:
- Qualitative content analysis : Tracking the occurrence, position and meaning of words or phrases
- Thematic analysis : Closely examining the data to identify the main themes and patterns
- Discourse analysis : Studying how communication works in social contexts
If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.
- Chi square goodness of fit test
- Degrees of freedom
- Null hypothesis
- Discourse analysis
- Control groups
- Mixed methods research
- Non-probability sampling
- Quantitative research
- Inclusion and exclusion criteria
Research bias
- Rosenthal effect
- Implicit bias
- Cognitive bias
- Selection bias
- Negativity bias
- Status quo bias
Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.
Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.
In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .
The research methods you use depend on the type of data you need to answer your research question .
- If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
- If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
- If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.
Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.
There are various approaches to qualitative data analysis , but they all share five steps in common:
- Prepare and organize your data.
- Review and explore your data.
- Develop a data coding system.
- Assign codes to the data.
- Identify recurring themes.
The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .
A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.
Cite this Scribbr article
If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.
Streefkerk, R. (2023, June 22). Qualitative vs. Quantitative Research | Differences, Examples & Methods. Scribbr. Retrieved September 23, 2024, from https://www.scribbr.com/methodology/qualitative-quantitative-research/
Is this article helpful?
Raimo Streefkerk
Other students also liked, what is quantitative research | definition, uses & methods, what is qualitative research | methods & examples, mixed methods research | definition, guide & examples, get unlimited documents corrected.
✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts
Quantitative and Qualitative Research
- I NEED TO . . .
What is Quantitative Research?
- What is Qualitative Research?
- Quantitative vs Qualitative
- Step 1: Accessing CINAHL
- Step 2: Create a Keyword Search
- Step 3: Create a Subject Heading Search
- Step 4: Repeat Steps 1-3 for Second Concept
- Step 5: Repeat Steps 1-3 for Quantitative Terms
- Step 6: Combining All Searches
- Step 7: Adding Limiters
- Step 8: Save Your Search!
- What Kind of Article is This?
- More Research Help This link opens in a new window
Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns . Quantitative research gathers a range of numeric data. Some of the numeric data is intrinsically quantitative (e.g. personal income), while in other cases the numeric structure is imposed (e.g. ‘On a scale from 1 to 10, how depressed did you feel last week?’). The collection of quantitative information allows researchers to conduct simple to extremely sophisticated statistical analyses that aggregate the data (e.g. averages, percentages), show relationships among the data (e.g. ‘Students with lower grade point averages tend to score lower on a depression scale’) or compare across aggregated data (e.g. the USA has a higher gross domestic product than Spain). Quantitative research includes methodologies such as questionnaires, structured observations or experiments and stands in contrast to qualitative research. Qualitative research involves the collection and analysis of narratives and/or open-ended observations through methodologies such as interviews, focus groups or ethnographies.
Coghlan, D., Brydon-Miller, M. (2014). The SAGE encyclopedia of action research (Vols. 1-2). London, : SAGE Publications Ltd doi: 10.4135/9781446294406
What is the purpose of quantitative research?
The purpose of quantitative research is to generate knowledge and create understanding about the social world. Quantitative research is used by social scientists, including communication researchers, to observe phenomena or occurrences affecting individuals. Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population.
Allen, M. (2017). The SAGE encyclopedia of communication research methods (Vols. 1-4). Thousand Oaks, CA: SAGE Publications, Inc doi: 10.4135/9781483381411
How do I know if the study is a quantitative design? What type of quantitative study is it?
Quantitative Research Designs: Descriptive non-experimental, Quasi-experimental or Experimental?
Studies do not always explicitly state what kind of research design is being used. You will need to know how to decipher which design type is used. The following video will help you determine the quantitative design type.
- << Previous: I NEED TO . . .
- Next: What is Qualitative Research? >>
- Last Updated: Aug 19, 2024 2:09 PM
- URL: https://libguides.uta.edu/quantitative_and_qualitative_research
University of Texas Arlington Libraries 702 Planetarium Place · Arlington, TX 76019 · 817-272-3000
- Internet Privacy
- Accessibility
- Problems with a guide? Contact Us.
Quantitative Research
- Reference work entry
- First Online: 13 January 2019
- Cite this reference work entry
- Leigh A. Wilson 2 , 3
5309 Accesses
4 Citations
Quantitative research methods are concerned with the planning, design, and implementation of strategies to collect and analyze data. Descartes, the seventeenth-century philosopher, suggested that how the results are achieved is often more important than the results themselves, as the journey taken along the research path is a journey of discovery. High-quality quantitative research is characterized by the attention given to the methods and the reliability of the tools used to collect the data. The ability to critique research in a systematic way is an essential component of a health professional’s role in order to deliver high quality, evidence-based healthcare. This chapter is intended to provide a simple overview of the way new researchers and health practitioners can understand and employ quantitative methods. The chapter offers practical, realistic guidance in a learner-friendly way and uses a logical sequence to understand the process of hypothesis development, study design, data collection and handling, and finally data analysis and interpretation.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save.
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
- Available as PDF
- Read on any device
- Instant download
- Own it forever
- Available as EPUB and PDF
- Durable hardcover edition
- Dispatched in 3 to 5 business days
- Free shipping worldwide - see info
Tax calculation will be finalised at checkout
Purchases are for personal use only
Institutional subscriptions
Similar content being viewed by others
Writing Quantitative Research Studies
Qualitative Research Methods
Babbie ER. The practice of social research. 14th ed. Belmont: Wadsworth Cengage; 2016.
Google Scholar
Descartes. Cited in Halverston, W. (1976). In: A concise introduction to philosophy, 3rd ed. New York: Random House; 1637.
Doll R, Hill AB. The mortality of doctors in relation to their smoking habits. BMJ. 1954;328(7455):1529–33. https://doi.org/10.1136/bmj.328.7455.1529 .
Article Google Scholar
Liamputtong P. Research methods in health: foundations for evidence-based practice. 3rd ed. Melbourne: Oxford University Press; 2017.
McNabb DE. Research methods in public administration and nonprofit management: quantitative and qualitative approaches. 2nd ed. New York: Armonk; 2007.
Merriam-Webster. Dictionary. http://www.merriam-webster.com . Accessed 20th December 2017.
Olesen Larsen P, von Ins M. The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index. Scientometrics. 2010;84(3):575–603.
Pannucci CJ, Wilkins EG. Identifying and avoiding bias in research. Plast Reconstr Surg. 2010;126(2):619–25. https://doi.org/10.1097/PRS.0b013e3181de24bc .
Petrie A, Sabin C. Medical statistics at a glance. 2nd ed. London: Blackwell Publishing; 2005.
Portney LG, Watkins MP. Foundations of clinical research: applications to practice. 3rd ed. New Jersey: Pearson Publishing; 2009.
Sheehan J. Aspects of research methodology. Nurse Educ Today. 1986;6:193–203.
Wilson LA, Black DA. Health, science research and research methods. Sydney: McGraw Hill; 2013.
Download references
Author information
Authors and affiliations.
School of Science and Health, Western Sydney University, Penrith, NSW, Australia
Leigh A. Wilson
Faculty of Health Science, Discipline of Behavioural and Social Sciences in Health, University of Sydney, Lidcombe, NSW, Australia
You can also search for this author in PubMed Google Scholar
Corresponding author
Correspondence to Leigh A. Wilson .
Editor information
Editors and affiliations.
Pranee Liamputtong
Rights and permissions
Reprints and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this entry
Cite this entry.
Wilson, L.A. (2019). Quantitative Research. In: Liamputtong, P. (eds) Handbook of Research Methods in Health Social Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-10-5251-4_54
Download citation
DOI : https://doi.org/10.1007/978-981-10-5251-4_54
Published : 13 January 2019
Publisher Name : Springer, Singapore
Print ISBN : 978-981-10-5250-7
Online ISBN : 978-981-10-5251-4
eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences
Share this entry
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
- Publish with us
Policies and ethics
- Find a journal
- Track your research
An official website of the United States government
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
- Publications
- Account settings
The PMC website is updating on October 15, 2024. Learn More or Try it out now .
- Advanced Search
- Journal List
- J Korean Med Sci
- v.38(37); 2023 Sep 18
- PMC10506897
Conducting and Writing Quantitative and Qualitative Research
Edward barroga.
1 Department of Medical Education, Showa University School of Medicine, Tokyo, Japan.
Glafera Janet Matanguihan
2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.
Atsuko Furuta
Makiko arima, shizuma tsuchiya, chikako kawahara, yusuke takamiya.
Comprehensive knowledge of quantitative and qualitative research systematizes scholarly research and enhances the quality of research output. Scientific researchers must be familiar with them and skilled to conduct their investigation within the frames of their chosen research type. When conducting quantitative research, scientific researchers should describe an existing theory, generate a hypothesis from the theory, test their hypothesis in novel research, and re-evaluate the theory. Thereafter, they should take a deductive approach in writing the testing of the established theory based on experiments. When conducting qualitative research, scientific researchers raise a question, answer the question by performing a novel study, and propose a new theory to clarify and interpret the obtained results. After which, they should take an inductive approach to writing the formulation of concepts based on collected data. When scientific researchers combine the whole spectrum of inductive and deductive research approaches using both quantitative and qualitative research methodologies, they apply mixed-method research. Familiarity and proficiency with these research aspects facilitate the construction of novel hypotheses, development of theories, or refinement of concepts.
Graphical Abstract
INTRODUCTION
Novel research studies are conceptualized by scientific researchers first by asking excellent research questions and developing hypotheses, then answering these questions by testing their hypotheses in ethical research. 1 , 2 , 3 Before they conduct novel research studies, scientific researchers must possess considerable knowledge of both quantitative and qualitative research. 2
In quantitative research, researchers describe existing theories, generate and test a hypothesis in novel research, and re-evaluate existing theories deductively based on their experimental results. 1 , 4 , 5 In qualitative research, scientific researchers raise and answer research questions by performing a novel study, then propose new theories by clarifying their results inductively. 1 , 6
RATIONALE OF THIS ARTICLE
When researchers have a limited knowledge of both research types and how to conduct them, this can result in substandard investigation. Researchers must be familiar with both types of research and skilled to conduct their investigations within the frames of their chosen type of research. Thus, meticulous care is needed when planning quantitative and qualitative research studies to avoid unethical research and poor outcomes.
Understanding the methodological and writing assumptions 7 , 8 underpinning quantitative and qualitative research, especially by non-Anglophone researchers, is essential for their successful conduct. Scientific researchers, especially in the academe, face pressure to publish in international journals 9 where English is the language of scientific communication. 10 , 11 In particular, non-Anglophone researchers face challenges related to linguistic, stylistic, and discourse differences. 11 , 12 Knowing the assumptions of the different types of research will help clarify research questions and methodologies, easing the challenge and help.
SEARCH FOR RELEVANT ARTICLES
To identify articles relevant to this topic, we adhered to the search strategy recommended by Gasparyan et al. 7 We searched through PubMed, Scopus, Directory of Open Access Journals, and Google Scholar databases using the following keywords: quantitative research, qualitative research, mixed-method research, deductive reasoning, inductive reasoning, study design, descriptive research, correlational research, experimental research, causal-comparative research, quasi-experimental research, historical research, ethnographic research, meta-analysis, narrative research, grounded theory, phenomenology, case study, and field research.
AIMS OF THIS ARTICLE
This article aims to provide a comparative appraisal of qualitative and quantitative research for scientific researchers. At present, there is still a need to define the scope of qualitative research, especially its essential elements. 13 Consensus on the critical appraisal tools to assess the methodological quality of qualitative research remains lacking. 14 Framing and testing research questions can be challenging in qualitative research. 2 In the healthcare system, it is essential that research questions address increasingly complex situations. Therefore, research has to be driven by the kinds of questions asked and the corresponding methodologies to answer these questions. 15 The mixed-method approach also needs to be clarified as this would appear to arise from different philosophical underpinnings. 16
This article also aims to discuss how particular types of research should be conducted and how they should be written in adherence to international standards. In the US, Europe, and other countries, responsible research and innovation was conceptualized and promoted with six key action points: engagement, gender equality, science education, open access, ethics and governance. 17 , 18 International ethics standards in research 19 as well as academic integrity during doctoral trainings are now integral to the research process. 20
POTENTIAL BENEFITS FROM THIS ARTICLE
This article would be beneficial for researchers in further enhancing their understanding of the theoretical, methodological, and writing aspects of qualitative and quantitative research, and their combination.
Moreover, this article reviews the basic features of both research types and overviews the rationale for their conduct. It imparts information on the most common forms of quantitative and qualitative research, and how they are carried out. These aspects would be helpful for selecting the optimal methodology to use for research based on the researcher’s objectives and topic.
This article also provides information on the strengths and weaknesses of quantitative and qualitative research. Such information would help researchers appreciate the roles and applications of both research types and how to gain from each or their combination. As different research questions require different types of research and analyses, this article is anticipated to assist researchers better recognize the questions answered by quantitative and qualitative research.
Finally, this article would help researchers to have a balanced perspective of qualitative and quantitative research without considering one as superior to the other.
TYPES OF RESEARCH
Research can be classified into two general types, quantitative and qualitative. 21 Both types of research entail writing a research question and developing a hypothesis. 22 Quantitative research involves a deductive approach to prove or disprove the hypothesis that was developed, whereas qualitative research involves an inductive approach to create a hypothesis. 23 , 24 , 25 , 26
In quantitative research, the hypothesis is stated before testing. In qualitative research, the hypothesis is developed through inductive reasoning based on the data collected. 27 , 28 For types of data and their analysis, qualitative research usually includes data in the form of words instead of numbers more commonly used in quantitative research. 29
Quantitative research usually includes descriptive, correlational, causal-comparative / quasi-experimental, and experimental research. 21 On the other hand, qualitative research usually encompasses historical, ethnographic, meta-analysis, narrative, grounded theory, phenomenology, case study, and field research. 23 , 25 , 28 , 30 A summary of the features, writing approach, and examples of published articles for each type of qualitative and quantitative research is shown in Table 1 . 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43
Research | Type | Methodology feature | Research writing pointers | Example of published article |
---|---|---|---|---|
Quantitative | Descriptive research | Describes status of identified variable to provide systematic information about phenomenon | Explain how a situation, sample, or variable was examined or observed as it occurred without investigator interference | Östlund AS, Kristofferzon ML, Häggström E, Wadensten B. Primary care nurses’ performance in motivational interviewing: a quantitative descriptive study. 2015;16(1):89. |
Correlational research | Determines and interprets extent of relationship between two or more variables using statistical data | Describe the establishment of reliability and validity, converging evidence, relationships, and predictions based on statistical data | Díaz-García O, Herranz Aguayo I, Fernández de Castro P, Ramos JL. Lifestyles of Spanish elders from supervened SARS-CoV-2 variant onwards: A correlational research on life satisfaction and social-relational praxes. 2022;13:948745. | |
Causal-comparative/Quasi-experimental research | Establishes cause-effect relationships among variables | Write about comparisons of the identified control groups exposed to the treatment variable with unexposed groups | : Sharma MK, Adhikari R. Effect of school water, sanitation, and hygiene on health status among basic level students in Nepal. Environ Health Insights 2022;16:11786302221095030. | |
Uses non-randomly assigned groups where it is not logically feasible to conduct a randomized controlled trial | Provide clear descriptions of the causes determined after making data analyses and conclusions, and known and unknown variables that could potentially affect the outcome | |||
[The study applies a causal-comparative research design] | ||||
: Tuna F, Tunçer B, Can HB, Süt N, Tuna H. Immediate effect of Kinesio taping® on deep cervical flexor endurance: a non-controlled, quasi-experimental pre-post quantitative study. 2022;40(6):528-35. | ||||
Experimental research | Establishes cause-effect relationship among group of variables making up a study using scientific method | Describe how an independent variable was manipulated to determine its effects on dependent variables | Hyun C, Kim K, Lee S, Lee HH, Lee J. Quantitative evaluation of the consciousness level of patients in a vegetative state using virtual reality and an eye-tracking system: a single-case experimental design study. 2022;32(10):2628-45. | |
Explain the random assignments of subjects to experimental treatments | ||||
Qualitative | Historical research | Describes past events, problems, issues, and facts | Write the research based on historical reports | Silva Lima R, Silva MA, de Andrade LS, Mello MA, Goncalves MF. Construction of professional identity in nursing students: qualitative research from the historical-cultural perspective. 2020;28:e3284. |
Ethnographic research | Develops in-depth analytical descriptions of current systems, processes, and phenomena or understandings of shared beliefs and practices of groups or culture | Compose a detailed report of the interpreted data | Gammeltoft TM, Huyền Diệu BT, Kim Dung VT, Đức Anh V, Minh Hiếu L, Thị Ái N. Existential vulnerability: an ethnographic study of everyday lives with diabetes in Vietnam. 2022;29(3):271-88. | |
Meta-analysis | Accumulates experimental and correlational results across independent studies using statistical method | Specify the topic, follow reporting guidelines, describe the inclusion criteria, identify key variables, explain the systematic search of databases, and detail the data extraction | Oeljeklaus L, Schmid HL, Kornfeld Z, Hornberg C, Norra C, Zerbe S, et al. Therapeutic landscapes and psychiatric care facilities: a qualitative meta-analysis. 2022;19(3):1490. | |
Narrative research | Studies an individual and gathers data by collecting stories for constructing a narrative about the individual’s experiences and their meanings | Write an in-depth narration of events or situations focused on the participants | Anderson H, Stocker R, Russell S, Robinson L, Hanratty B, Robinson L, et al. Identity construction in the very old: a qualitative narrative study. 2022;17(12):e0279098. | |
Grounded theory | Engages in inductive ground-up or bottom-up process of generating theory from data | Write the research as a theory and a theoretical model. | Amini R, Shahboulaghi FM, Tabrizi KN, Forouzan AS. Social participation among Iranian community-dwelling older adults: a grounded theory study. 2022;11(6):2311-9. | |
Describe data analysis procedure about theoretical coding for developing hypotheses based on what the participants say | ||||
Phenomenology | Attempts to understand subjects’ perspectives | Write the research report by contextualizing and reporting the subjects’ experiences | Green G, Sharon C, Gendler Y. The communication challenges and strength of nurses’ intensive corona care during the two first pandemic waves: a qualitative descriptive phenomenology study. 2022;10(5):837. | |
Case study | Analyzes collected data by detailed identification of themes and development of narratives written as in-depth study of lessons from case | Write the report as an in-depth study of possible lessons learned from the case | Horton A, Nugus P, Fortin MC, Landsberg D, Cantarovich M, Sandal S. Health system barriers and facilitators to living donor kidney transplantation: a qualitative case study in British Columbia. 2022;10(2):E348-56. | |
Field research | Directly investigates and extensively observes social phenomenon in natural environment without implantation of controls or experimental conditions | Describe the phenomenon under the natural environment over time | Buus N, Moensted M. Collectively learning to talk about personal concerns in a peer-led youth program: a field study of a community of practice. 2022;30(6):e4425-32. | |
QUANTITATIVE RESEARCH
Deductive approach.
The deductive approach is used to prove or disprove the hypothesis in quantitative research. 21 , 25 Using this approach, researchers 1) make observations about an unclear or new phenomenon, 2) investigate the current theory surrounding the phenomenon, and 3) hypothesize an explanation for the observations. Afterwards, researchers will 4) predict outcomes based on the hypotheses, 5) formulate a plan to test the prediction, and 6) collect and process the data (or revise the hypothesis if the original hypothesis was false). Finally, researchers will then 7) verify the results, 8) make the final conclusions, and 9) present and disseminate their findings ( Fig. 1A ).
Types of quantitative research
The common types of quantitative research include (a) descriptive, (b) correlational, c) experimental research, and (d) causal-comparative/quasi-experimental. 21
Descriptive research is conducted and written by describing the status of an identified variable to provide systematic information about a phenomenon. A hypothesis is developed and tested after data collection, analysis, and synthesis. This type of research attempts to factually present comparisons and interpretations of findings based on analyses of the characteristics, progression, or relationships of a certain phenomenon by manipulating the employed variables or controlling the involved conditions. 44 Here, the researcher examines, observes, and describes a situation, sample, or variable as it occurs without investigator interference. 31 , 45 To be meaningful, the systematic collection of information requires careful selection of study units by precise measurement of individual variables 21 often expressed as ranges, means, frequencies, and/or percentages. 31 , 45 Descriptive statistical analysis using ANOVA, Student’s t -test, or the Pearson coefficient method has been used to analyze descriptive research data. 46
Correlational research is performed by determining and interpreting the extent of a relationship between two or more variables using statistical data. This involves recognizing data trends and patterns without necessarily proving their causes. The researcher studies only the data, relationships, and distributions of variables in a natural setting, but does not manipulate them. 21 , 45 Afterwards, the researcher establishes reliability and validity, provides converging evidence, describes relationship, and makes predictions. 47
Experimental research is usually referred to as true experimentation. The researcher establishes the cause-effect relationship among a group of variables making up a study using the scientific method or process. This type of research attempts to identify the causal relationships between variables through experiments by arbitrarily controlling the conditions or manipulating the variables used. 44 The scientific manuscript would include an explanation of how the independent variable was manipulated to determine its effects on the dependent variables. The write-up would also describe the random assignments of subjects to experimental treatments. 21
Causal-comparative/quasi-experimental research closely resembles true experimentation but is conducted by establishing the cause-effect relationships among variables. It may also be conducted to establish the cause or consequences of differences that already exist between, or among groups of individuals. 48 This type of research compares outcomes between the intervention groups in which participants are not randomized to their respective interventions because of ethics- or feasibility-related reasons. 49 As in true experiments, the researcher identifies and measures the effects of the independent variable on the dependent variable. However, unlike true experiments, the researchers do not manipulate the independent variable.
In quasi-experimental research, naturally formed or pre-existing groups that are not randomly assigned are used, particularly when an ethical, randomized controlled trial is not feasible or logical. 50 The researcher identifies control groups as those which have been exposed to the treatment variable, and then compares these with the unexposed groups. The causes are determined and described after data analysis, after which conclusions are made. The known and unknown variables that could still affect the outcome are also included. 7
QUALITATIVE RESEARCH
Inductive approach.
Qualitative research involves an inductive approach to develop a hypothesis. 21 , 25 Using this approach, researchers answer research questions and develop new theories, but they do not test hypotheses or previous theories. The researcher seldom examines the effectiveness of an intervention, but rather explores the perceptions, actions, and feelings of participants using interviews, content analysis, observations, or focus groups. 25 , 45 , 51
Distinctive features of qualitative research
Qualitative research seeks to elucidate about the lives of people, including their lived experiences, behaviors, attitudes, beliefs, personality characteristics, emotions, and feelings. 27 , 30 It also explores societal, organizational, and cultural issues. 30 This type of research provides a good story mimicking an adventure which results in a “thick” description that puts readers in the research setting. 52
The qualitative research questions are open-ended, evolving, and non-directional. 26 The research design is usually flexible and iterative, commonly employing purposive sampling. The sample size depends on theoretical saturation, and data is collected using in-depth interviews, focus groups, and observations. 27
In various instances, excellent qualitative research may offer insights that quantitative research cannot. Moreover, qualitative research approaches can describe the ‘lived experience’ perspectives of patients, practitioners, and the public. 53 Interestingly, recent developments have looked into the use of technology in shaping qualitative research protocol development, data collection, and analysis phases. 54
Qualitative research employs various techniques, including conversational and discourse analysis, biographies, interviews, case-studies, oral history, surveys, documentary and archival research, audiovisual analysis, and participant observations. 26
Conducting qualitative research
To conduct qualitative research, investigators 1) identify a general research question, 2) choose the main methods, sites, and subjects, and 3) determine methods of data documentation access to subjects. Researchers also 4) decide on the various aspects for collecting data (e.g., questions, behaviors to observe, issues to look for in documents, how much (number of questions, interviews, or observations), 5) clarify researchers’ roles, and 6) evaluate the study’s ethical implications in terms of confidentiality and sensitivity. Afterwards, researchers 7) collect data until saturation, 8) interpret data by identifying concepts and theories, and 9) revise the research question if necessary and form hypotheses. In the final stages of the research, investigators 10) collect and verify data to address revisions, 11) complete the conceptual and theoretical framework to finalize their findings, and 12) present and disseminate findings ( Fig. 1B ).
Types of qualitative research
The different types of qualitative research include (a) historical research, (b) ethnographic research, (c) meta-analysis, (d) narrative research, (e) grounded theory, (f) phenomenology, (g) case study, and (h) field research. 23 , 25 , 28 , 30
Historical research is conducted by describing past events, problems, issues, and facts. The researcher gathers data from written or oral descriptions of past events and attempts to recreate the past without interpreting the events and their influence on the present. 6 Data is collected using documents, interviews, and surveys. 55 The researcher analyzes these data by describing the development of events and writes the research based on historical reports. 2
Ethnographic research is performed by observing everyday life details as they naturally unfold. 2 It can also be conducted by developing in-depth analytical descriptions of current systems, processes, and phenomena or by understanding the shared beliefs and practices of a particular group or culture. 21 The researcher collects extensive narrative non-numerical data based on many variables over an extended period, in a natural setting within a specific context. To do this, the researcher uses interviews, observations, and active participation. These data are analyzed by describing and interpreting them and developing themes. A detailed report of the interpreted data is then provided. 2 The researcher immerses himself/herself into the study population and describes the actions, behaviors, and events from the perspective of someone involved in the population. 23 As examples of its application, ethnographic research has helped to understand a cultural model of family and community nursing during the coronavirus disease 2019 outbreak. 56 It has also been used to observe the organization of people’s environment in relation to cardiovascular disease management in order to clarify people’s real expectations during follow-up consultations, possibly contributing to the development of innovative solutions in care practices. 57
Meta-analysis is carried out by accumulating experimental and correlational results across independent studies using a statistical method. 21 The report is written by specifying the topic and meta-analysis type. In the write-up, reporting guidelines are followed, which include description of inclusion criteria and key variables, explanation of the systematic search of databases, and details of data extraction. Meta-analysis offers in-depth data gathering and analysis to achieve deeper inner reflection and phenomenon examination. 58
Narrative research is performed by collecting stories for constructing a narrative about an individual’s experiences and the meanings attributed to them by the individual. 9 It aims to hear the voice of individuals through their account or experiences. 17 The researcher usually conducts interviews and analyzes data by storytelling, content review, and theme development. The report is written as an in-depth narration of events or situations focused on the participants. 2 , 59 Narrative research weaves together sequential events from one or two individuals to create a “thick” description of a cohesive story or narrative. 23 It facilitates understanding of individuals’ lives based on their own actions and interpretations. 60
Grounded theory is conducted by engaging in an inductive ground-up or bottom-up strategy of generating a theory from data. 24 The researcher incorporates deductive reasoning when using constant comparisons. Patterns are detected in observations and then a working hypothesis is created which directs the progression of inquiry. The researcher collects data using interviews and questionnaires. These data are analyzed by coding the data, categorizing themes, and describing implications. The research is written as a theory and theoretical models. 2 In the write-up, the researcher describes the data analysis procedure (i.e., theoretical coding used) for developing hypotheses based on what the participants say. 61 As an example, a qualitative approach has been used to understand the process of skill development of a nurse preceptor in clinical teaching. 62 A researcher can also develop a theory using the grounded theory approach to explain the phenomena of interest by observing a population. 23
Phenomenology is carried out by attempting to understand the subjects’ perspectives. This approach is pertinent in social work research where empathy and perspective are keys to success. 21 Phenomenology studies an individual’s lived experience in the world. 63 The researcher collects data by interviews, observations, and surveys. 16 These data are analyzed by describing experiences, examining meanings, and developing themes. The researcher writes the report by contextualizing and reporting the subjects’ experience. This research approach describes and explains an event or phenomenon from the perspective of those who have experienced it. 23 Phenomenology understands the participants’ experiences as conditioned by their worldviews. 52 It is suitable for a deeper understanding of non-measurable aspects related to the meanings and senses attributed by individuals’ lived experiences. 60
Case study is conducted by collecting data through interviews, observations, document content examination, and physical inspections. The researcher analyzes the data through a detailed identification of themes and the development of narratives. The report is written as an in-depth study of possible lessons learned from the case. 2
Field research is performed using a group of methodologies for undertaking qualitative inquiries. The researcher goes directly to the social phenomenon being studied and observes it extensively. In the write-up, the researcher describes the phenomenon under the natural environment over time with no implantation of controls or experimental conditions. 45
DIFFERENCES BETWEEN QUANTITATIVE AND QUALITATIVE RESEARCH
Scientific researchers must be aware of the differences between quantitative and qualitative research in terms of their working mechanisms to better understand their specific applications. This knowledge will be of significant benefit to researchers, especially during the planning process, to ensure that the appropriate type of research is undertaken to fulfill the research aims.
In terms of quantitative research data evaluation, four well-established criteria are used: internal validity, external validity, reliability, and objectivity. 23 The respective correlating concepts in qualitative research data evaluation are credibility, transferability, dependability, and confirmability. 30 Regarding write-up, quantitative research papers are usually shorter than their qualitative counterparts, which allows the latter to pursue a deeper understanding and thus producing the so-called “thick” description. 29
Interestingly, a major characteristic of qualitative research is that the research process is reversible and the research methods can be modified. This is in contrast to quantitative research in which hypothesis setting and testing take place unidirectionally. This means that in qualitative research, the research topic and question may change during literature analysis, and that the theoretical and analytical methods could be altered during data collection. 44
Quantitative research focuses on natural, quantitative, and objective phenomena, whereas qualitative research focuses on social, qualitative, and subjective phenomena. 26 Quantitative research answers the questions “what?” and “when?,” whereas qualitative research answers the questions “why?,” “how?,” and “how come?.” 64
Perhaps the most important distinction between quantitative and qualitative research lies in the nature of the data being investigated and analyzed. Quantitative research focuses on statistical, numerical, and quantitative aspects of phenomena, and employ the same data collection and analysis, whereas qualitative research focuses on the humanistic, descriptive, and qualitative aspects of phenomena. 26 , 28
Structured versus unstructured processes
The aims and types of inquiries determine the difference between quantitative and qualitative research. In quantitative research, statistical data and a structured process are usually employed by the researcher. Quantitative research usually suggests quantities (i.e., numbers). 65 On the other hand, researchers typically use opinions, reasons, verbal statements, and an unstructured process in qualitative research. 63 Qualitative research is more related to quality or kind. 65
In quantitative research, the researcher employs a structured process for collecting quantifiable data. Often, a close-ended questionnaire is used wherein the response categories for each question are designed in which values can be assigned and analyzed quantitatively using a common scale. 66 Quantitative research data is processed consecutively from data management, then data analysis, and finally to data interpretation. Data should be free from errors and missing values. In data management, variables are defined and coded. In data analysis, statistics (e.g., descriptive, inferential) as well as central tendency (i.e., mean, median, mode), spread (standard deviation), and parameter estimation (confidence intervals) measures are used. 67
In qualitative research, the researcher uses an unstructured process for collecting data. These non-statistical data may be in the form of statements, stories, or long explanations. Various responses according to respondents may not be easily quantified using a common scale. 66
Composing a qualitative research paper resembles writing a quantitative research paper. Both papers consist of a title, an abstract, an introduction, objectives, methods, findings, and discussion. However, a qualitative research paper is less regimented than a quantitative research paper. 27
Quantitative research as a deductive hypothesis-testing design
Quantitative research can be considered as a hypothesis-testing design as it involves quantification, statistics, and explanations. It flows from theory to data (i.e., deductive), focuses on objective data, and applies theories to address problems. 45 , 68 It collects numerical or statistical data; answers questions such as how many, how often, how much; uses questionnaires, structured interview schedules, or surveys 55 as data collection tools; analyzes quantitative data in terms of percentages, frequencies, statistical comparisons, graphs, and tables showing statistical values; and reports the final findings in the form of statistical information. 66 It uses variable-based models from individual cases and findings are stated in quantified sentences derived by deductive reasoning. 24
In quantitative research, a phenomenon is investigated in terms of the relationship between an independent variable and a dependent variable which are numerically measurable. The research objective is to statistically test whether the hypothesized relationship is true. 68 Here, the researcher studies what others have performed, examines current theories of the phenomenon being investigated, and then tests hypotheses that emerge from those theories. 4
Quantitative hypothesis-testing research has certain limitations. These limitations include (a) problems with selection of meaningful independent and dependent variables, (b) the inability to reflect subjective experiences as variables since variables are usually defined numerically, and (c) the need to state a hypothesis before the investigation starts. 61
Qualitative research as an inductive hypothesis-generating design
Qualitative research can be considered as a hypothesis-generating design since it involves understanding and descriptions in terms of context. It flows from data to theory (i.e., inductive), focuses on observation, and examines what happens in specific situations with the aim of developing new theories based on the situation. 45 , 68 This type of research (a) collects qualitative data (e.g., ideas, statements, reasons, characteristics, qualities), (b) answers questions such as what, why, and how, (c) uses interviews, observations, or focused-group discussions as data collection tools, (d) analyzes data by discovering patterns of changes, causal relationships, or themes in the data; and (e) reports the final findings as descriptive information. 61 Qualitative research favors case-based models from individual characteristics, and findings are stated using context-dependent existential sentences that are justifiable by inductive reasoning. 24
In qualitative research, texts and interviews are analyzed and interpreted to discover meaningful patterns characteristic of a particular phenomenon. 61 Here, the researcher starts with a set of observations and then moves from particular experiences to a more general set of propositions about those experiences. 4
Qualitative hypothesis-generating research involves collecting interview data from study participants regarding a phenomenon of interest, and then using what they say to develop hypotheses. It involves the process of questioning more than obtaining measurements; it generates hypotheses using theoretical coding. 61 When using large interview teams, the key to promoting high-level qualitative research and cohesion in large team methods and successful research outcomes is the balance between autonomy and collaboration. 69
Qualitative data may also include observed behavior, participant observation, media accounts, and cultural artifacts. 61 Focus group interviews are usually conducted, audiotaped or videotaped, and transcribed. Afterwards, the transcript is analyzed by several researchers.
Qualitative research also involves scientific narratives and the analysis and interpretation of textual or numerical data (or both), mostly from conversations and discussions. Such approach uncovers meaningful patterns that describe a particular phenomenon. 2 Thus, qualitative research requires skills in grasping and contextualizing data, as well as communicating data analysis and results in a scientific manner. The reflective process of the inquiry underscores the strengths of a qualitative research approach. 2
Combination of quantitative and qualitative research
When both quantitative and qualitative research methods are used in the same research, mixed-method research is applied. 25 This combination provides a complete view of the research problem and achieves triangulation to corroborate findings, complementarity to clarify results, expansion to extend the study’s breadth, and explanation to elucidate unexpected results. 29
Moreover, quantitative and qualitative findings are integrated to address the weakness of both research methods 29 , 66 and to have a more comprehensive understanding of the phenomenon spectrum. 66
For data analysis in mixed-method research, real non-quantitized qualitative data and quantitative data must both be analyzed. 70 The data obtained from quantitative analysis can be further expanded and deepened by qualitative analysis. 23
In terms of assessment criteria, Hammersley 71 opined that qualitative and quantitative findings should be judged using the same standards of validity and value-relevance. Both approaches can be mutually supportive. 52
Quantitative and qualitative research must be carefully studied and conducted by scientific researchers to avoid unethical research and inadequate outcomes. Quantitative research involves a deductive process wherein a research question is answered with a hypothesis that describes the relationship between independent and dependent variables, and the testing of the hypothesis. This investigation can be aptly termed as hypothesis-testing research involving the analysis of hypothesis-driven experimental studies resulting in a test of significance. Qualitative research involves an inductive process wherein a research question is explored to generate a hypothesis, which then leads to the development of a theory. This investigation can be aptly termed as hypothesis-generating research. When the whole spectrum of inductive and deductive research approaches is combined using both quantitative and qualitative research methodologies, mixed-method research is applied, and this can facilitate the construction of novel hypotheses, development of theories, or refinement of concepts.
Disclosure: The authors have no potential conflicts of interest to disclose.
Author Contributions:
- Conceptualization: Barroga E, Matanguihan GJ.
- Data curation: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
- Formal analysis: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C.
- Investigation: Barroga E, Matanguihan GJ, Takamiya Y, Izumi M.
- Methodology: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
- Project administration: Barroga E, Matanguihan GJ.
- Resources: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
- Supervision: Barroga E.
- Validation: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
- Visualization: Barroga E, Matanguihan GJ.
- Writing - original draft: Barroga E, Matanguihan GJ.
- Writing - review & editing: Barroga E, Matanguihan GJ, Furuta A, Arima M, Tsuchiya S, Kawahara C, Takamiya Y, Izumi M.
Quantitative Research: Examples of Research Questions and Solutions
Are you ready to embark on a journey into the world of quantitative research? Whether you’re a seasoned researcher or just beginning your academic journey, understanding how to formulate effective research questions is essential for conducting meaningful studies. In this blog post, we’ll explore examples of quantitative research questions across various disciplines and discuss how StatsCamp.org courses can provide the tools and support you need to overcome any challenges you may encounter along the way.
Understanding Quantitative Research Questions
Quantitative research involves collecting and analyzing numerical data to answer research questions and test hypotheses. These questions typically seek to understand the relationships between variables, predict outcomes, or compare groups. Let’s explore some examples of quantitative research questions across different fields:
- What is the relationship between class size and student academic performance?
- Does the use of technology in the classroom improve learning outcomes?
- How does parental involvement affect student achievement?
- What is the effect of a new drug treatment on reducing blood pressure?
- Is there a correlation between physical activity levels and the risk of cardiovascular disease?
- How does socioeconomic status influence access to healthcare services?
- What factors influence consumer purchasing behavior?
- Is there a relationship between advertising expenditure and sales revenue?
- How do demographic variables affect brand loyalty?
Stats Camp: Your Solution to Mastering Quantitative Research Methodologies
At StatsCamp.org, we understand that navigating the complexities of quantitative research can be daunting. That’s why we offer a range of courses designed to equip you with the knowledge and skills you need to excel in your research endeavors. Whether you’re interested in learning about regression analysis, experimental design, or structural equation modeling, our experienced instructors are here to guide you every step of the way.
Bringing Your Own Data
One of the unique features of StatsCamp.org is the opportunity to bring your own data to the learning process. Our instructors provide personalized guidance and support to help you analyze your data effectively and overcome any roadblocks you may encounter. Whether you’re struggling with data cleaning, model specification, or interpretation of results, our team is here to help you succeed.
Courses Offered at StatsCamp.org
- Latent Profile Analysis Course : Learn how to identify subgroups, or profiles, within a heterogeneous population based on patterns of responses to multiple observed variables.
- Bayesian Statistics Course : A comprehensive introduction to Bayesian data analysis, a powerful statistical approach for inference and decision-making. Through a series of engaging lectures and hands-on exercises, participants will learn how to apply Bayesian methods to a wide range of research questions and data types.
- Structural Equation Modeling (SEM) Course : Dive into advanced statistical techniques for modeling complex relationships among variables.
- Multilevel Modeling Course : A in-depth exploration of this advanced statistical technique, designed to analyze data with nested structures or hierarchies. Whether you’re studying individuals within groups, schools within districts, or any other nested data structure, multilevel modeling provides the tools to account for the dependencies inherent in such data.
As you embark on your journey into quantitative research, remember that StatsCamp.org is here to support you every step of the way. Whether you’re formulating research questions, analyzing data, or interpreting results, our courses provide the knowledge and expertise you need to succeed. Join us today and unlock the power of quantitative research!
Follow Us On Social! Facebook | Instagram | X
933 San Mateo Blvd NE #500, Albuquerque, NM 87108
4414 82 nd Street #212-121 Lubbock, TX 79424
Monday – Friday: 9:00 AM – 5:00 PM
© Copyright 2003 - 2024 | All Rights Reserved Stats Camp Foundation 501(c)(3) Non-Profit Organization.
- How it works
How To Write A Research Paper Abstract | Steps And Examples
Published by Alvin Nicolas at September 23rd, 2024 , Revised On September 23, 2024
An abstract is written to pique a reader’s interest and if necessary, motivate them to leave the comfort of their home and get the full article or paper.
In simpler words, an abstract is a well-structured summary of your academic work, such as an article, research paper , thesis or dissertation. It outlines the most important aspects of your work and is about 300-500 words. Although the structure may vary from discipline to discipline, it is still a necessary part of academic writing.
Abstract Research Paper Definition
A research paper abstract is the face of the research paper. This means that it is what creates the first impression of the paper. It is the summary of the research paper and communicates the content quality and relevance. They exist with one vital purpose, and that is to sell your research. A reader quickly scrutinises and scans the abstract to gain an idea of your research, the problem statement addressed, the methodologies used and the results gained from it.
An abstract most commonly has the following parts:
- Introduction
Types of Abstracts In Research Paper
One of the main purposes of an abstract is to describe your paper. It can either be informative, descriptive, structured or unstructured. Let’s develop a common understanding of how research paper abstracts are written based on content and writing style.
Structured Abstract
Structured abstracts are mostly written in journals and have a separate paragraph for each section. Each part is organised and has distinct headings such as introduction/background, objective, design, methodologies, material, results and conclusion.
Unstructured Abstract
An unstructured abstract is mostly used in social sciences and humanities disciplines and does not have separate paragraphs for each section. It consists of one whole paragraph that serves as the face of the research paper.
Descriptive Abstract
A descriptive abstract only outlines the crucial details of the researcher’s publication. They are mostly short, consisting of 75-105 words. They briefly explain the background, mission statement, purpose and objective but omit the research methodologies, results and conclusions.
Informative Abstract
This abstract can be both structured and unstructured and provides detailed information on the research paper. This means that it is an extensive paragraph on each aspect of research and provides accurate data on each section, especially results.
How to Make Abstract In Research Paper
The abstract part of the research paper summarises the main points of the article. Whether you are applying for research grants, writing a thesis or dissertation or studying a research problem , it is necessary to know how to make a good abstract for a research paper. Here are some of the details on how to write a research paper abstract.
General Topic In Study
This section serves as the introduction to the research paper. It answers the questions of what is being studied or what problem statement is being addressed here. The hypothesis and purpose are highlighted within this section, setting the context for the rest of the research paper.
It is recommended to never go into detailed information as this part only offers initial information regarding the research. Also, this part is always written in the present or past tense, and never in the future as the research has been completed.
Our study’s main objective was to assess the photoprotective capability of chocolate consumption, by contrasting a simple dark chocolate with a specifically made chocolate with preserved high flavanol. According to the study’s hypothesis, eating chocolate induced with HF can provide nutritional defence against skin damage by the sun.
Research/Analytical Methods
Next, it is important to write the research methods used in the research. Either qualitative or quantitative methods, every aspect of them should be mentioned to give the reader a good idea of what scale, survey and sample was used within the research. Some questions that need to be answered in this paragraph are:
- What was the research setting?
- What was the sample size, and how were the participants sampled?
- What was the research method used?
- What was the primary outcome of the initial test?
- What questions or treatments were administered to the participants?
A double-blinded in vivo study was carried out, where 30 healthy adults participated in it. It included 8 males and 22 females between the age of 10 years to 43 years. Fifteen subjects each were given either an HF or LF chocolate and were divided based on their skin phototypes.
Results/ Arguments
This section can be both in present and past tense and must include the main findings of the study. It should be detailed and lengthy, giving all relevant results. These are the following questions this section of the abstract research paper must answer:
- What did the study yield?
- What were the results in comparison to the hypothesis ?
- What were the predictions and were the outcomes similar to it?
In conclusion, our research revealed that eating chocolate high in flavanol shields humans from damaging UV rays, mainly because of its anti-inflammatory and antioxidant properties. The research indicates that HF chocolate lessens the acute inflammatory response to UV rays, by regulating the synthesis of proinflammatory cytokines and nitric oxide.
Discussions
Finally, you should discuss the conclusions and the author’s thoughts on the research. Whether the hypothesis proved to be right or not is mostly discussed here, along with the limitations or complications encountered during the research. It is necessary to mention this as a reader must be aware of the credibility and generalisability of the research.
Our research concludes by showing that cocoa flavanols have the potential to be a safe natural method of shielding skin from UV damage.
Hire an Expert Writer
Orders completed by our expert writers are
- Formally drafted in an academic style
- Free Amendments and 100% Plagiarism Free – or your money back!
- 100% Confidential and Timely Delivery!
- Free anti-plagiarism report
- Appreciated by thousands of clients. Check client reviews
Research Paper Abstract Example
Here is an abstract example for research papers to help you understand how abstracts are written:
Does the lockdown have a role in stopping COVID-19?
Every day the coronavirus is spreading, with deaths and fatalities increasing day by day. This has led to a nationwide lockdown all over the world. Our study aims to study the effect of lockdown days on the spread of coronavirus in countries. COVID-19 data from 49 countries was gathered from www.worldometer.com. As of May 5, 2020, there were 1440776 approved active cases of COVID-19 from the countries included in this study. Data on COVID-19 days and lockdown days was obtained from the websites of the official institutions of these 49 countries. Moreover, the correlation test was used to analyse the associations between total COVID-19 cases and the lockdown days. The lockdown days were seen to be correlated to the COVID-19 pandemic. The social-isolation phenomenon; the lockdown has been seen to prevent COVID-19 and the spread of this deadly virus. There are several concerns about the ability of the national healthcare system to effectively manage COVID-19 patients. To slow down the spread of this virus, it is necessary to take the strictest of actions. Even though Italy and Spain have the highest death rates because of COVID-19, there has been a sudden drop in the rates because of the strict measures taken by the government.
Frequently Asked Questions
When should i write an abstract.
You should write an abstract when you are completing a thesis or dissertation, submitting a research design or applying for research grants. You can also write an abstract if you are writing a book
What are things to avoid while writing an abstract?
You should avoid using passive sentences and future tenses. Avoid detailed descriptions as an abstract is supposed to be just a summary. Complex jargon and complicated long sentences should also be avoided as they take away the reader’s interest. Lastly, always address your problem statement in a good way.
Should I cite sources in an abstract?
You should try to focus on showcasing your original work, rather than cite other work. Try to make your work as comprehensive and understanding so that your work is highlighted better.
You May Also Like
Struggling to find relevant and up-to-date topics for your dissertation? Here is all you need to know if unsure about how to choose dissertation topic.
How to write a hypothesis for dissertation,? A hypothesis is a statement that can be tested with the help of experimental or theoretical research.
Let’s briefly examine the concept of research paradigms, their pillars, purposes, types, examples, and how they can be combined.
USEFUL LINKS
LEARNING RESOURCES
COMPANY DETAILS
- How It Works
Redirect Notice
Inclusion of women and minorities as participants in research involving human subjects.
Learn about the policy for the Inclusion of Women and Minorities in NIH-funded research and how to comply with this policy in applications and progress reports.
NIH is mandated by the Public Health Service Act sec. 492B, 42 U.S.C. sec. 289a-2 to ensure the inclusion of women and members of racial and ethnic minority groups in all NIH-funded clinical research in a manner that is appropriate to the scientific question under study. The primary goal of this law is to ensure that research findings can be generalizable to the entire population. Additionally, the statute requires clinical trials to be designed to analyze whether study outcomes differ for women and members of racial and ethnic minority groups.
Implementation
Applications & proposals.
All NIH-funded studies that meet the NIH definition for clinical research must address plans for the inclusion of women and minorities within the application or proposal. Using the PHS Human Subjects and Clinical Trial Information Form, applications and proposals should describe the composition of the proposed study population in terms of sex or gender, racial, and ethnic groups, and provide a rationale for the proposed section. Any exclusions based on sex or gender, race, or ethnicity must include a rationale and justification based on a scientific or ethical basis. Investigators should also plan for appropriate outreach programs and activities to recruit and retain the proposed study population consistent with the purposes of the research project. Refer to the PHS Human Subjects and Clinical Trial Information Form Instructions for complete guidance on what to address in your application.
Peer Review
Scientific Review Groups will assess each application/proposal as being "acceptable" or "unacceptable" with regard to the inclusion of racial and ethnic minorities and women in the research project. For additional information on review considerations, refer to the Guidelines for the Review of Inclusion in Clinical Research . For information regarding the coding used to rate inclusion during peer review, see the list of NIH Peer Review Inclusion Codes .
Progress Reports
NIH recipients/offerors must collect and annually report information on sex or gender race, and ethnicity in progress reports. Refer to this Decision Tree for help determining reporting expectations for different types of studies.
Special Considerations for NIH-defined Phase III Clinical Trials
Applications & Proposals: If the proposed research includes an NIH-defined Phase III Clinical Trial , evidence must be reviewed to show whether or not clinically important differences in the intervention effect by sex or gender, race, and/or ethnicity are to be expected. The application or proposal must address plans for the valid analysis of group differences on the basis of sex or gender, race, and ethnicity unless there is clear evidence that such differences are unlikely to be seen.
Progress Reports: For projects involving NIH-defined Phase III Clinical Trials, annual Research Performance Progress Reports (RPPRs) should include a statement indicating the status of analyses of the primary outcome by sex or gender, race, and ethnicity. The results of these analyses should be included in the “Project Outcomes” section of the RPPR. See the Sample Project Outcomes page for an example.
Registering & Reporting in ClinicalTrials.gov: NIH-defined Phase III Clinical Trials that also meet the definition of an applicable clinical trial must report the results of the valid analysis of group differences in ClinicalTrials.gov. The valid analyses should be done for each primary outcome measure by sex or gender, and race and/or ethnicity. Upon study registration in ClinicalTrials.gov, outcome measures should be pre-specified by sex or gender, and race and/or ethnicity to prepare for reporting results in this stratified manner. Refer to the Guidance for Valid Analysis Reporting and NOT-OD-18-014 for additional information.
Policy Notices and Procedures
Amendment: NIH Policy and Guidelines on the Inclusion of Women and Minorities as Subjects in Clinical Research | Amendment to the on the inclusion of women and minorities as subjects in clinical research. Includes requirement that recipients conducting applicable NIH-defined Phase III clinical trials ensure results of valid analyses by sex or gender, race, and/or ethnicity are submitted to ClinicalTrials.gov. | November 28, 2017 |
NIH Policy and Guidelines on the Inclusion of Women and Minorities as Subjects in Clinical Research – Amended | Updated NIH policy on the inclusion of women and minorities as subjects in clinical research, which supersedes the and . | October 9, 2001 |
NIH Policy and Guidelines on the Inclusion of Women and Minorities as Subjects in Clinical Research | Consolidated and concise summary of the on the inclusion of women and minorities in clinical research. | October 9, 2001 |
NIH Policy on Reporting Race and Ethnicity Data: Subjects in Clinical Research | Additional guidance and instruction for using the revised minimum standards for maintaining, collecting, and presenting data on race and ethnicity. | August 8, 2001 |
Infographic that walks through the elements of the existing dataset or resource definition to help users understand whether how it applies to their research. | August 2, 2024 | |
This one-page resource highlights allowable costs for NIH grants that can be utilized to enhance inclusion through recruitment and retention activities. Allowable costs listed in the NIH Grants Policy Statement are provided with examples of inclusion-related activities. | August 10, 2023 | |
May 19, 2022 | ||
In Part 1 of this NIH All About Grants podcast miniseries, NIH’s Inclusion Policy Officer Dawn Corbett tells us how to consider inclusion plans when putting together an application. | April 20, 2022 | |
NIH’s Inclusion Policy Officer Dawn Corbett covers inclusion plans during peer review and post-award in Part 2 of this NIH All About Grants podcast miniseries. | April 20, 2022 | |
: Recruitment and Retention | Document listing resources on recruitment and retention of women, racial and ethnic minorities, and individuals across the lifespan. Resources include toolkits, articles, and more. | May 9, 2022 |
Analyses by Sex or Gender, Race and Ethnicity for NIH-defined Phase III Clinical Trials | Guidance for understanding the definition of valid analysis and links to key resources for investigators and recipeients | March 8, 2022 |
: Including Diverse Populations in NIH-funded Clinical Research | Video presentation by the NIH Inclusion Policy Officer for the NIH Grants Conference PreCon event, Human Subjects Research: Policies, Clinical Trials, & Inclusion, in December 2022. The presentation explains NIH inclusion policies and requirements for applicants and recipients. | January 27, 2023 |
Announcing the availability of data on sex or gender, race, and ethnicity by NIH Research, Condition, and Disease Classification (RCDC) category. | April 11, 2022 | |
Inclusion statistics by NIH RCDC category | Report on the representation of participants in human subjects studies from fiscal years 2018-2021 for FY2018 projects associated with the listed Research, Condition, and Disease Categorization (RCDC) categories. | April 11, 2022 |
Reporting the Results of Valid Analyses | The "All About Grants" podcast featuring an interview with the Inclusion Policy Officer about valid analysis reporting for the Inclusion of Women and Minorities policy. | August 6, 2018 |
HSS overview and training information | As of June 9, 2018, the Human Subjects System (HSS) replaced the Inclusion Management System (IMS). Similar to IMS, HSS is used by NIH staff, grant applicants, and recipients to manage human subjects information, including inclusion information. | May 25, 2018 |
Valid Analysis Reporting in ClinicalTrials.gov for Applicable NIH-Defined Phase III Clinical Trials | This guidance document describes the required ClinicalTrials.gov reporting of valid analysis results for applicable NIH-defined Phase III clinical trials. The guidance includes examples and recommendations for creating the NIH-required outcomes during registration and entering results for reporting. | May 21, 2018 |
Continuing to Strengthen Inclusion Reporting on NIH-funded Phase III Trials | Blog post by NIH's Deputy Director of Extramural Research, Dr. Mike Lauer describing valid analysis and the reporting requirements for applicable NIH-Defined Phase III clinical trials. | January 8, 2018 |
Applying the Inclusion of Women and Minorities Policy | A tool for understanding how to monitor inclusion based on sex or gender, race and ethnicity in research. | January 3, 2018 |
Inclusion of Women and Minorities in Clinical Research | Reports published by the Department of Health and Human Services. The data tables included in these reports provide documentation of the monitoring of inclusion with some degree of analysis. | September, 2017 |
Upcoming Events
DHSR One pager of resources for external users
- Human Subjects Research
- NIH Office of Research on Women's Health (ORWH)
- National Institute on Minority Health and Health Disparities (NIMHD)
- Diversity and Inclusion in Clinical Trials (NIMHD)
- For NIH Staff
Have additional questions? Contact your program officer or the Inclusion policy team: [email protected]
IMAGES
VIDEO
COMMENTS
A purpose statement clearly defines the objective of your qualitative or quantitative research. Learn how to create one through unique and real-world examples.
INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...
As with qualitative research purpose statements, Creswell (2003) recommends the use of deliberate language to alert the reader to the purpose of the study, but quantitative purpose statements also include the theory or conceptual framework guiding the study and the variables that are being studied and how they are related.
A well-written quantitative purpose statement contains the following elements. identified variables; the relationship among the variables; the participants; the site of the research; Here is an example. The purpose of this study is to determine the strength of the relationship between height to weight among undergrad students in Thailand.
Qualitative Purpose Statements. B1: Use the term "qualitative" or tell the qualitative type of study you are conducting B2: Use qualitative terms such as: explore, discover, understand, describe B3: State the "central phenomenon" you plan to investigate B4: State the participants and research site in the study.
Quantitative research is a type of research that focuses on collecting and analyzing numerical data to answer research questions. There are two main methods used to conduct quantitative research: 1. Primary Method. There are several methods of primary quantitative research, each with its own strengths and limitations.
Quantitative research methods. You can use quantitative research methods for descriptive, correlational or experimental research. In descriptive research, you simply seek an overall summary of your study variables.; In correlational research, you investigate relationships between your study variables.; In experimental research, you systematically examine whether there is a cause-and-effect ...
tion (Fraenkel et al., 2012). It is primarily a quantitative research technique in which the researcher administers some sort of survey or questionnaire to a sample—or, in some cases, an entire population—of individuals to describe their attitudes, opinions, behaviors, experiences, or other characteristics of th.
Generalizability: Quantitative research aims to produce findings that can be generalized to larger populations beyond the specific sample studied. This is achieved through the use of random sampling methods and statistical inference. Examples of Quantitative Research. Here are some examples of quantitative research in different fields:
Quantitative research Quantitative methods allow us to learn about the world by quantifying some variation(s) in it. Example: how do suicide rates vary across demographic categories (Durkheim)? In order to learn about the world, we use inference: General definition: "Using facts you know to learn about facts you don't know" (Gary King)
The 'research aim' describes the overarching goal or purpose of the study (Kumar, 2019). This is usually a broad, high-level purpose statement, summing up the central question that the research intends to answer. Example of an Overarching Research Aim: "The aim of this study is to explore the impact of climate change on crop productivity."
An example of a quantitative research study is the survey conducted to understand how long a doctor takes to tend to a patient when the patient walks into the hospital. ... Sample size: Quantitative research is conducted on a significant sample size representing the target ... Its purpose is to quantify the problem and understand its extent ...
Quantitative research is the process of collecting and analyzing numerical data to describe, predict, or control variables of interest. This type of research helps in testing the causal relationships between variables, making predictions, and generalizing results to wider populations. The purpose of quantitative research is to test a predefined ...
Research Aims: Examples. True to the name, research aims usually start with the wording "this research aims to…", "this research seeks to…", and so on. For example: "This research aims to explore employee experiences of digital transformation in retail HR.". "This study sets out to assess the interaction between student ...
The purpose of this study is to provide some important fundamental concepts of quantitative research to the common readers for the development of their future projects, articles and/or theses.
Quantitative research methods. You can use quantitative research methods for descriptive, correlational or experimental research. In descriptive research, you simply seek an overall summary of your study variables.; In correlational research, you investigate relationships between your study variables.; In experimental research, you systematically examine whether there is a cause-and-effect ...
When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Both are important for gaining different kinds of knowledge. Quantitative research. Quantitative research is expressed in numbers and graphs. It is used to test or confirm theories and assumptions.
Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population. Allen, M. (2017). The SAGE encyclopedia ...
Quantitative research methods are concerned with the planning, design, and implementation of strategies to collect and analyze data. Descartes, the seventeenth-century philosopher, suggested that how the results are achieved is often more important than the results themselves, as the journey taken along the research path is a journey of discovery. . High-quality quantitative research is ...
quantitative research are: Describing a problem statement by presenting the need for an explanation of a variable's relationship. Offering literature, a significant function by answering research ...
Introduction. Statistical analysis is necessary for any research project seeking to make quantitative conclusions. The following is a primer for research-based statistical analysis. It is intended to be a high-level overview of appropriate statistical testing, while not diving too deep into any specific methodology.
INTRODUCTION. Novel research studies are conceptualized by scientific researchers first by asking excellent research questions and developing hypotheses, then answering these questions by testing their hypotheses in ethical research.1,2,3 Before they conduct novel research studies, scientific researchers must possess considerable knowledge of both quantitative and qualitative research.2
Understanding Quantitative Research Questions. Quantitative research involves collecting and analyzing numerical data to answer research questions and test hypotheses. These questions typically seek to understand the relationships between variables, predict outcomes, or compare groups. Let's explore some examples of quantitative research ...
A research paper abstract is the face of the research paper. This means that it is what creates the first impression of the paper. It is the summary of the research paper and communicates the content quality and relevance. They exist with one vital purpose, and that is to sell your research.
National Academies of Sciences, Engineering, and Medicine (Ed.). (2018). How people learn II: Learners, contexts, and cultures: Committee on How People Learn II: the science and practice of learning: board on behavioral, cognitive, and sensory sciences: board on science education: division of behavioral and social sciences and education: a consensus study report of the National Academies of ...
More quantitative research is now warranted to substantiate causal claims, as well as generalizability and replicability. For instance, empirical research can seek to identify the conditions under which firm members transition from one framing of their purpose to another one.
Purpose. NIH is mandated by the Public Health Service Act sec. 492B, 42 U.S.C. sec. 289a-2 to ensure the inclusion of women and members of racial and ethnic minority groups in all NIH-funded clinical research in a manner that is appropriate to the scientific question under study. The primary goal of this law is to ensure that research findings can be generalizable to the entire population.